1887

Abstract

Spring viraemia of carp is an environmentally and economically important disease affecting cyprinids, primarily common carp (). The causative agent of this disease is (SVCV) – a member of the genus of the family . The disease is presently endemic in Europe, America and several Asian countries, where it causes significant morbidity and mortality in affected fish. SVCV infection is generally associated with exophthalmia; abdominal distension; petechial haemorrhage of the skin, gills, eyes and internal organs; degeneration of the gill lamellae; a swollen and coarse-textured spleen; hepatic necrosis; enteritis; and pericarditis. The SVCV genome is composed of linear, negative-sense, ssRNA containing five genes in the order 3′-N–P–M–G–L-5′, encoding a nucleoprotein, phosphoprotein, matrix protein, glycoprotein and RNA-dependent RNA polymerase, respectively. Fully sequenced SVCV strains exhibit distinct amino acid substitutions at unique positions, which may contribute to as-yet unknown strain-specific characteristics. To advance the study of SVCV and the control of spring viraemia of carp disease in the future, this review summarizes our current understanding of SVCV in terms of its genomic characteristics, genetic diversity and pathogenesis, and provides insights into antiviral immunity against SVCV, diagnosis of SVCV and vaccination strategies to combat SVCV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000436
2016-05-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1037.html?itemId=/content/journal/jgv/10.1099/jgv.0.000436&mimeType=html&fmt=ahah

References

  1. Adamek M., Rakus K. L., Chyb J., Brogden G., Huebner A., Irnazarow I., Steinhagen D.. 2012; Interferon type I responses to virus infections in carp cells: in vitro studies on Cyprinid herpesvirus 3 and Rhabdovirus carpio infections. Fish Shellfish Immunol33:482–493 [CrossRef][PubMed]
    [Google Scholar]
  2. Adelmann M., Köllner B., Bergmann S. M., Fischer U., Lange B., Weitschies W., Enzmann P. J., Fichtner D.. 2008; Development of an oral vaccine for immunisation of rainbow trout (Oncorhynchus mykiss) against viral haemorrhagic septicaemia. Vaccine26:837–844 [CrossRef][PubMed]
    [Google Scholar]
  3. Ahne W.. 1981; Serological techniques currently used in fish virology. Dev Biol Stand49:3–27
    [Google Scholar]
  4. Ahne W.. 1985; Viral infection cycles in pike (Esox lucius L.). J Appl Ichthyol1:90–91 [CrossRef]
    [Google Scholar]
  5. Ahne W.. 1986; The influence of environmental temperature and infection route on the immune response of carp (Cyprinus carpio) to spring viremia of carp virus (SVCV). Vet Immunol Immunopathol12:383–386 [CrossRef][PubMed]
    [Google Scholar]
  6. Ahne W., Björklund H. V., Essbauer S., Fijan N., Kurath G., Winton J. R.. 2002; Spring viremia of carp (SVC). Dis Aquat Organ52:261–272 [CrossRef][PubMed]
    [Google Scholar]
  7. Ammayappan A., Kurath G., Thompson T. M., Vakharia V. N.. 2011; A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity. Mar Biotechnol (NY)13:672–683 [CrossRef][PubMed]
    [Google Scholar]
  8. Ashraf U., Ye J., Ruan X., Wan S., Zhu B., Cao S.. 2015; Usutu virus: an emerging flavivirus in Europe. Viruses7:219–238 [CrossRef][PubMed]
    [Google Scholar]
  9. Babon J. J., Varghese L. N., Nicola N. A.. 2014; Inhibition of IL-6 family cytokines by SOCS3. Semin Immunol26:13–19 [CrossRef][PubMed]
    [Google Scholar]
  10. Basic A., Schachner O., Bilic I., Hess M.. 2009; Phylogenetic analysis of spring viraemia of carp virus isolates from Austria indicates the existence of at least two subgroups within genogroup Id. Dis Aquat Organ85:31–40 [CrossRef][PubMed]
    [Google Scholar]
  11. Baudouy A. M., Danton M., Merle G.. 1980; [SVCV infection of carp]. Ann Rech Vet11:245–249 (in French)
    [Google Scholar]
  12. Biacchesi S., Thoulouze M. I., Béarzotti M., Yu Y. X., Brémont M.. 2000; Recovery of NV knockout infectious hematopoietic necrosis virus expressing foreign genes. J Virol74:11247–11253 [CrossRef][PubMed]
    [Google Scholar]
  13. Biacchesi S., LeBerre M., Lamoureux A., Louise Y., Lauret E., Boudinot P., Brémont M.. 2009; Mitochondrial antiviral signaling protein plays a major role in induction of the fish innate immune response against RNA and DNA viruses. J Virol83:7815–7827 [CrossRef][PubMed]
    [Google Scholar]
  14. Bishop D. H. L., Smith M. S.. 1977; Rhabdoviruses. In Molecular Biology of Animal Viruses pp167–280Edited by Nayak D. P.. New York, NY: Marcel Dekker;
    [Google Scholar]
  15. Björklund H. V., Higman K. H., Kurath G.. 1996; The glycoprotein genes and gene junctions of the fish rhabdoviruses spring viremia of carp virus and hirame rhabdovirus: analysis of relationships with other rhabdoviruses. Virus Res42:65–80 [CrossRef][PubMed]
    [Google Scholar]
  16. Bruns A. M., Horvath C. M.. 2012; Activation of RIG-I-like receptor signal transduction. Crit Rev Biochem Mol Biol47:194–206 [CrossRef][PubMed]
    [Google Scholar]
  17. Chambers T. J., Halevy M., Nestorowicz A., Rice C. M., Lustig S.. 1998; West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol79:2375–2380 [CrossRef][PubMed]
    [Google Scholar]
  18. Chang M., Collet B., Nie P., Lester K., Campbell S., Secombes C. J., Zou J.. 2011; Expression and functional characterization of the RIG-I-like receptors MDA5 and LGP2 in Rainbow trout (Oncorhynchus mykiss). J Virol85:8403–8412 [CrossRef][PubMed]
    [Google Scholar]
  19. Chang C. J., Robertsen C., Sun B., Robertsen B.. 2014; Protection of Atlantic salmon against virus infection by intramuscular injection of IFNc expression plasmid. Vaccine32:4695–4702 [CrossRef][PubMed]
    [Google Scholar]
  20. Chen H.. 2000; Recent advances in mucosal vaccine development. J Control Release67:117–128 [CrossRef][PubMed]
    [Google Scholar]
  21. Chen Z. Y., Liu H., Li Z. Q., Zhang Q. Y.. 2008; Development and characterization of monoclonal antibodies to spring viraemia of carp virus. Vet Immunol Immunopathol123:266–276 [CrossRef][PubMed]
    [Google Scholar]
  22. Chen L., Su J., Yang C., Peng L., Wan Q., Wang L.. 2012; Functional characterizations of RIG-I to GCRV and viral/bacterial PAMPs in grass carp Ctenopharyngodon idella . PLoS One7:e42182 [CrossRef][PubMed]
    [Google Scholar]
  23. Chen S. P., Peng R. H., Chiou P. P.. 2015a; Modulatory effect of CpG oligodeoxynucleotide on a DNA vaccine against nervous necrosis virus in orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol45:919–926 [CrossRef][PubMed]
    [Google Scholar]
  24. Chen W. Q., Hu Y. W., Zou P. F., Ren S. S., Nie P., Chang M. X.. 2015b; MAVS splicing variants contribute to the induction of interferon and interferon-stimulated genes mediated by RIG-I-like receptors. Dev Comp Immunol49:19–30 [CrossRef][PubMed]
    [Google Scholar]
  25. Collins P. L., Hill M. G., Camargo E., Grosfeld H., Chanock R. M., Murphy B. R.. 1995; Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proc Natl Acad Sci U S A92:11563–11567 [CrossRef][PubMed]
    [Google Scholar]
  26. Costes B., Raj V. S., Michel B., Fournier G., Thirion M., Gillet L., Mast J., Lieffrig F., Bremont M., Vanderplasschen A.. 2009; The major portal of entry of koi herpesvirus in Cyprinus carpio is the skin. J Virol83:2819–2830 [CrossRef][PubMed]
    [Google Scholar]
  27. Cui L. C., Guan X. T., Liu Z. M., Tian C. Y., Xu Y. G.. 2015; Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): a promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination. Vaccine33:3092–3099 [CrossRef][PubMed]
    [Google Scholar]
  28. Devadas K., Dhawan S.. 2006; Hemin activation ameliorates HIV-1 infection via heme oxygenase-1 induction. J Immunol176:4252–4257 [CrossRef][PubMed]
    [Google Scholar]
  29. Dhar A. K., Manna S. K., Thomas Allnutt F. C.. 2014; Viral vaccines for farmed finfish. Virusdisease25:1–17 [CrossRef][PubMed]
    [Google Scholar]
  30. Emmenegger E. J., Kurath G.. 2008; DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus. Vaccine26:6415–6421 [CrossRef][PubMed]
    [Google Scholar]
  31. Faisal M., Ahne W.. 1984; Spring viremia of carp virus (SVCV): comparison of immunoperoxidase, fluorescent antibody and cell culture isolation techniques for detection of antigen. J Fish Dis7:57–64 [CrossRef]
    [Google Scholar]
  32. Fallahi S., Mazar Z. A., Ghasemian M., Haghighi A.. 2015; Challenging loop-mediated isothermal amplification (LAMP) technique for molecular detection of Toxoplasma gondii . Asian Pac J Trop Med8:366–372 [CrossRef][PubMed]
    [Google Scholar]
  33. Feng H., Liu H., Kong R., Wang L., Wang Y., Hu W., Guo Q.. 2011; Expression profiles of carp IRF-3/-7 correlate with the up-regulation of RIG-I/MAVS/TRAF3/TBK1, four pivotal molecules in RIG-I signaling pathway. Fish Shellfish Immunol30:1159–1169 [CrossRef][PubMed]
    [Google Scholar]
  34. Fijan N.. 1972; Infectious dropsy in carp – a disease complex. In Diseases of Fish pp39–51Edited by Mawdesley-Thomas L. E.. London: Academic Press/Zoological Society;
    [Google Scholar]
  35. Fijan N.. 1984; Vaccination of fish in European pond culture: prospects and constraints. Symp Biol Hung23:233–241
    [Google Scholar]
  36. Fijan N.. 1999; Spring viremia of carp and other viral diseases of warm-water fish. In Fish Diseases and Disorders, pp. 177–244. Edited by P. T. K. Woo & D. W. Bruno. Wallingford: CAB International.
  37. Fuerst T. R., Niles E. G., Studier F. W., Moss B.. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A83:8122–8126 [CrossRef][PubMed]
    [Google Scholar]
  38. Galdeano C. M., Perdigón G.. 2006; The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol13:219–226 [CrossRef][PubMed]
    [Google Scholar]
  39. García-Valtanen P., Ortega-Villaizán M. M., Martínez-López A., Medina-Gali R., Pérez L., Mackenzie S., Figueras A., Coll J. M., Estepa A.. 2014; Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules. Autophagy10:1666–1680 [CrossRef][PubMed]
    [Google Scholar]
  40. Ghasemi M., Zamani H., Hosseini S. M., Haghighi Karsidani S., Bergmann S. M.. 2014; Caspian white fish (Rutilus frisii kutum) as a host for spring viremia of carp virus. Vet Microbiol170:408–413 [CrossRef][PubMed]
    [Google Scholar]
  41. Gomez D., Sunyer J. O., Salinas I.. 2013; The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish Shellfish Immunol35:1729–1739 [CrossRef][PubMed]
    [Google Scholar]
  42. Gotesman M., Soliman H., Besch R., El-Matbouli M.. 2015; Inhibition of spring viraemia of carp virus replication in an Epithelioma papulosum cyprini cell line by RNAi. J Fish Dis38:197–207 [CrossRef][PubMed]
    [Google Scholar]
  43. Gromowski G. D., Firestone C. Y., Whitehead S. S.. 2015; Genetic determinants of Japanese encephalitis virus vaccine strain SA14-14-2 that govern attenuation of virulence in mice. J Virol89:6328–6337 [CrossRef][PubMed]
    [Google Scholar]
  44. Guo C. Y., Huang Y. H., Wei S. N., Ouyang Z. L., Yan Y., Huang X. H., Qin Q. W.. 2015; Establishment of a new cell line from the heart of giant grouper, Epinephelus lanceolatus (Bloch), and its application in toxicology and virus susceptibility. J Fish Dis38:175–186 [CrossRef][PubMed]
    [Google Scholar]
  45. Haenen O. L. M., Davidse A.. 1993; Comparative pathogenicity of two strains of pike fry rhabdovirus and spring viremia of carp virus for young roach, common carp, grass carp and rainbow trout. Dis Aquat Organ15:87–92 [CrossRef]
    [Google Scholar]
  46. Han P. F., Li J., Hu Y., Sun W., Zhang S., Yang Y. H., Li Y. C., Kang X. P., Wu X. Y., other authors. 2015; H5N1 influenza A virus with K193E and G225E double mutations in hemagglutinin is attenuated and immunogenic in mice. J Gen Virol96:2522–2530 [CrossRef]
    [Google Scholar]
  47. Hill B. J., Underwood B. O., Smale C. J., Brown F.. 1975; Physico-chemical and serological characterization of five rhabdoviruses infecting fish. J Gen Virol27:369–378 [CrossRef][PubMed]
    [Google Scholar]
  48. Hirono I., Kondo H., Koyama T., Arma N. R., Hwang J. Y., Nozaki R., Midorikawa N., Aoki T.. 2007; Characterization of Japanese flounder (Paralichthys olivaceus) NK-lysin, an antimicrobial peptide. Fish Shellfish Immunol22:567–575 [CrossRef][PubMed]
    [Google Scholar]
  49. Hoffmann B., Schütze H., Mettenleiter T. C.. 2002; Determination of the complete genomic sequence and analysis of the gene products of the virus of Spring Viremia of Carp, a fish rhabdovirus. Virus Res84:89–100 [CrossRef][PubMed]
    [Google Scholar]
  50. Hoffmann B., Beer M., Schütze H., Mettenleiter T. C.. 2005; Fish rhabdoviruses: molecular epidemiology and evolution. Curr Top Microbiol Immunol292:81–117[PubMed]
    [Google Scholar]
  51. Honda K., Yanai H., Takaoka A., Taniguchi T.. 2005; Regulation of the type I IFN induction: a current view. Int Immunol17:1367–1378 [CrossRef][PubMed]
    [Google Scholar]
  52. Jackson W. T., Giddings T.H., Jr, Taylor M. P., Mulinyawe S., Rabinovitch M., Kopito R. R., Kirkegaard K.. 2005; Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol3:e156 [CrossRef][PubMed]
    [Google Scholar]
  53. Jacobs T., Bruhn H., Gaworski I., Fleischer B., Leippe M.. 2003; NK-lysin and its shortened analog NK-2 exhibit potent activities against Trypanosoma cruzi . Antimicrob Agents Chemother47:607–613 [CrossRef][PubMed]
    [Google Scholar]
  54. Jechlinger W.. 2006; Optimization and delivery of plasmid DNA for vaccination. Expert Rev Vaccines5:803–825 [CrossRef][PubMed]
    [Google Scholar]
  55. Johnson M. C., Maxwell J. M., Loh P. C., Leong J. A.. 1999; Molecular characterization of the glycoproteins from two warm water rhabdoviruses: snakehead rhabdovirus (SHRV) and rhabdovirus of penaeid shrimp (RPS)/spring viremia of carp virus (SVCV). Virus Res64:95–106 [CrossRef][PubMed]
    [Google Scholar]
  56. Johnson M. C., Simon B. E., Kim C. H., Leong J. A.. 2000; Production of recombinant snakehead rhabdovirus: the NV protein is not required for viral replication. J Virol74:2343–2350 [CrossRef][PubMed]
    [Google Scholar]
  57. Julkunen I., Sareneva T., Pirhonen J., Ronni T., Melén K., Matikainen S.. 2001; Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev12:171–180 [CrossRef][PubMed]
    [Google Scholar]
  58. Kanellos T., Sylvester I. D., D'Mello F., Howard C. R., Mackie A., Dixon P. F., Chang K. C., Ramstad A., Midtlyng P. J., Russell P. H.. 2006; DNA vaccination can protect Cyprinus carpio against spring viraemia of carp virus. Vaccine24:4927–4933 [CrossRef][PubMed]
    [Google Scholar]
  59. Kataoka C., Suzuki T., Kotani O., Iwata-Yoshikawa N., Nagata N., Ami Y., Wakita T., Nishimura Y., Shimizu H.. 2015; The role of VP1 amino acid residue 145 of enterovirus 71 in viral fitness and pathogenesis in a cynomolgus monkey model. PLoS Pathog11:e1005033 [CrossRef][PubMed]
    [Google Scholar]
  60. Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K. J., Takeuchi O., Akira S.. 2005; IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol6:981–988 [CrossRef][PubMed]
    [Google Scholar]
  61. Khunthong S., Jaroenram W., Arunrut N., Suebsing R., Mungsantisuk I., Kiatpathomchai W.. 2013; Rapid and sensitive detection of shrimp yellow head virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. J Virol Methods188:51–56 [CrossRef][PubMed]
    [Google Scholar]
  62. Kim H. J.. 2012; Improved diagnosis of spring viremia of carp by nested reverse-transcription PCR: development of a chimeric positive control for prevention of false-positive diagnosis. J Virol Methods185:39–42 [CrossRef][PubMed]
    [Google Scholar]
  63. Kim S. H., Thu B. J., Skall H. F., Vendramin N., Evensen O.. 2014; A single amino acid mutation (I1012F) of the RNA polymerase of marine viral hemorrhagic septicemia virus changes in vitro virulence to rainbow trout gill epithelial cells. J Virol88:7189–7198 [CrossRef][PubMed]
    [Google Scholar]
  64. Kirkegaard K., Taylor M. P., Jackson W. T.. 2004; Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol2:301–314 [CrossRef][PubMed]
    [Google Scholar]
  65. Kiuchi A., Roy P.. 1984; Comparison of the primary sequence of spring viremia of carp virus M protein with that of vesicular stomatitis virus. Virology134:238–243 [CrossRef][PubMed]
    [Google Scholar]
  66. Koutná M., Veselý T., Psikal I., Hu˚lová J.. 2003; Identification of spring viraemia of carp virus (SVCV) by combined RT-PCR and nested PCR. Dis Aquat Organ55:229–235 [CrossRef][PubMed]
    [Google Scholar]
  67. Lad S. P., Yang G., Scott D. A., Chao T. H., Correia J. S., de la Torre J. C., Li E.. 2008; Identification of MAVS splicing variants that interfere with RIGI/MAVS pathway signaling. Mol Immunol45:2277–2287 [CrossRef][PubMed]
    [Google Scholar]
  68. Lauksund S., Svingerud T., Bergan V., Robertsen B.. 2009; Atlantic salmon IPS-1 mediates induction of IFNa1 and activation of NF-kappaB and localizes to mitochondria. Dev Comp Immunol33:1196–1204 [CrossRef][PubMed]
    [Google Scholar]
  69. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K.. 1995; Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A92:4477–4481 [CrossRef][PubMed]
    [Google Scholar]
  70. Lehmann E., El-Tantawy W. H., Ocker M., Bartenschlager R., Lohmann V., Hashemolhosseini S., Tiegs G., Sass G.. 2010; The heme oxygenase 1 product biliverdin interferes with hepatitis C virus replication by increasing antiviral interferon response. Hepatology51:398–404 [CrossRef][PubMed]
    [Google Scholar]
  71. Lei X. Y., Chen Z. Y., He L. B., Pei C., Yuan X. P., Zhang Q. Y.. 2012; Characterization and virus susceptibility of a skin cell line from red-spotted grouper (Epinephelus akaara). Fish Physiol Biochem38:1175–1182 [CrossRef][PubMed]
    [Google Scholar]
  72. Li Z., Zhang Q., Luo P., Liu G., Wang M., Liu X.. 2015; Monoclonal antibody against M protein of spring viremia of carp virus. Monoclon Antib Immunodiagn Immunother34:122–125 [CrossRef][PubMed]
    [Google Scholar]
  73. Liang X. H., Kleeman L. K., Jiang H. H., Gordon G., Goldman J. E., Berry G., Herman B., Levine B.. 1998; Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol72:8586–8596[PubMed]
    [Google Scholar]
  74. Liu Z., Teng Y., Liu H., Jiang Y., Xie X., Li H., Lv J., Gao L., He J., other authors. 2008a; Simultaneous detection of three fish rhabdoviruses using multiplex real-time quantitative RT-PCR assay. J Virol Methods149:103–109 [CrossRef][PubMed]
    [Google Scholar]
  75. Liu Z., Teng Y., Xie X., Li H., Lv J., Gao L., Tian F., Jiang Y., Chu Z., other authors. 2008b; Development and evaluation of a one-step loop-mediated isothermal amplification for detection of spring viraemia of carp virus. J Appl Microbiol105:1220–1226 [CrossRef][PubMed]
    [Google Scholar]
  76. Liu H., Zheng X., Zhang F., Yu L., Zhang X., Dai H., Hua Q., Shi X., Lan W., other authors. 2013; Selection and characterization of single-chain recombinant antibodies against spring viraemia of carp virus from mouse phage display library. J Virol Methods194:178–184 [CrossRef][PubMed]
    [Google Scholar]
  77. Liu L., Zhu B., Wu S., Lin L., Liu G., Zhou Y., Wang W., Asim M., Yuan J., other authors. 2015; Spring viraemia of carp virus induces autophagy for necessary viral replication. Cell Microbiol17:595–605 [CrossRef][PubMed]
    [Google Scholar]
  78. Lorenzen N., LaPatra S. E.. 2005; DNA vaccines for aquacultured fish. Rev Sci Tech24:201–213[PubMed]
    [Google Scholar]
  79. Lu Y. A., Lannan C. N., Rohovec J. S., Fryer J. L.. 1990; Fish cell lines: establishment and characterization of three new cell lines from grass carp (Ctenopharyngodon idella). In Vitro Cell Dev Biol26:275–279 [CrossRef][PubMed]
    [Google Scholar]
  80. Lu W., Lin L., Jiang L.. 2007; Nanogold hollow balls with dendritic surface for hybridization of DNA. Biosens Bioelectron22:1101–1105 [CrossRef][PubMed]
    [Google Scholar]
  81. Luo P., Ruan X., Zhang Q., Li Z., Wang M., Liu X.. 2014; Monoclonal antibodies against G protein of spring viremia of carp virus. Monoclon Antib Immunodiagn Immunother33:340–343 [CrossRef][PubMed]
    [Google Scholar]
  82. Marcotegui M. A., Estepa A., Frias D., Coll J. M.. 1992; First report of a rhabdovirus affecting carp in Spain. Bull Eur Assoc Fish Pathol12:50–53
    [Google Scholar]
  83. Marinissen M. J., Tanos T., Bolós M., de Sagarra M. R., Coso O. A., Cuadrado A.. 2006; Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus-encoded G protein-coupled receptor. J Biol Chem281:11332–11346 [CrossRef][PubMed]
    [Google Scholar]
  84. Melchjorsen J., Rintahaka J., Søby S., Horan K. A., Poltajainen A., Østergaard L., Paludan S. R., Matikainen S.. 2010; Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J Virol84:11350–11358 [CrossRef][PubMed]
    [Google Scholar]
  85. Meylan E., Curran J., Hofmann K., Moradpour D., Binder M., Bartenschlager R., Tschopp J.. 2005; Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature437:1167–1172 [CrossRef][PubMed]
    [Google Scholar]
  86. Miller O., Fuller F. J., Gebreyes W. A., Lewbart G. A., Shchelkunov I. S., Shivappa R. B., Joiner C., Woolford G., Stone D. M., other authors. 2007; Phylogenetic analysis of spring virema of carp virus reveals distinct subgroups with common origins for recent isolates in North America and the UK. Dis Aquat Organ76:193–204 [CrossRef][PubMed]
    [Google Scholar]
  87. Min L., Li-Li Z., Jun-Wei G., Xin-Yuan Q., Yi-Jing L., Di-Qiu L.. 2012; Immunogenicity of Lactobacillus-expressing VP2 and VP3 of the infectious pancreatic necrosis virus (IPNV) in rainbow trout. Fish Shellfish Immunol32:196–203 [CrossRef][PubMed]
    [Google Scholar]
  88. Misk E., Garver K., Nagy E., Isaac S., Tubbs L., Huber P., Al-Hussinee L., Lumsden J. S.. 2015; Pathogenesis of spring viremia of carp virus in emerald shiner Notropis atherinoidesRafinesque, fathead minnow Pimephales promelas Rafinesque and white sucker Catostomus commersonii (Lacepede). J Fish Dis [Epub ahead of print] [CrossRef][PubMed]
    [Google Scholar]
  89. Mohandas S. S., Muthuchelvan D., Pandey A. B., Biswas S. K., Chand K., Venkatesan G., Choudhary D., Ramakrishnan M. A., Mondal B.. 2015; Development of reverse transcription loop mediated isothermal amplification assay for rapid detection of bluetongue viruses. J Virol Methods222:103–105 [CrossRef][PubMed]
    [Google Scholar]
  90. Negele R. D.. 1977; Histopathological changes in some organs of experimentally infected carp fingerlings with Rhabdovirus carpio . Bull Off Int Epizoot87:449–450
    [Google Scholar]
  91. O'Neill L. A., Bowie A. G.. 2010; Sensing and signaling in antiviral innate immunity. Curr Biol20:R328–R333 [CrossRef][PubMed]
    [Google Scholar]
  92. Ogas Castells M. L., La Torre J. L., Grigera P. R., Poggio T. V.. 2015; A single dose of a suicidal DNA vaccine induces a specific immune response in salmonids. J Fish Dis38:581–587 [CrossRef][PubMed]
    [Google Scholar]
  93. Orvedahl A., Levine B.. 2008; Viral evasion of autophagy. Autophagy4:280–285 [CrossRef][PubMed]
    [Google Scholar]
  94. Otterbein L. E., Choi A. M.. 2000; Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol279:L1029–L1037[PubMed]
    [Google Scholar]
  95. Ou T., Lei X. Y., He L. B., Zhou F. J., Zhang Q. Y.. 2014; Development of an Ussuri catfish Pseudobagrus ussuriensis skin cell line displaying differential cytopathic effects to three aquatic animal viruses. Virus Res189:56–62 [CrossRef][PubMed]
    [Google Scholar]
  96. Pachuk C. J., McCallus D. E., Weiner D. B., Satishchandran C.. 2000; DNA vaccines – challenges in delivery. Curr Opin Mol Ther2:188–198[PubMed]
    [Google Scholar]
  97. Padhi A., Verghese B.. 2012; Molecular evolutionary and epidemiological dynamics of a highly pathogenic fish rhabdovirus, the spring viremia of carp virus (SVCV). Vet Microbiol156:54–63 [CrossRef][PubMed]
    [Google Scholar]
  98. Perdigón G., Alvarez S., Pesce de Ruiz Holgado A.. 1991; Immunoadjuvant activity of oral Lactobacillus casei: influence of dose on the secretory immune response and protective capacity in intestinal infections. J Dairy Res58:485–496 [CrossRef][PubMed]
    [Google Scholar]
  99. Pereiro P., Varela M., Diaz-Rosales P., Romero A., Dios S., Figueras A., Novoa B.. 2015; Zebrafish Nk-lysins: first insights about their cellular and functional diversification. Dev Comp Immunol51:148–159 [CrossRef][PubMed]
    [Google Scholar]
  100. Poss K. D., Tonegawa S.. 1997; Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci U S A94:10919–10924 [CrossRef][PubMed]
    [Google Scholar]
  101. Pothlichet J., Chignard M., Si-Tahar M.. 2008; Cutting edge: innate immune response triggered by influenza A virus is negatively regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J Immunol180:2034–2038 [CrossRef][PubMed]
    [Google Scholar]
  102. Qiu L., Fan H., Jin W., Zhao B., Wang Y., Ju Y., Chen L., Chen Y., Duan Z., Meng S.. 2010; miR-122-induced down-regulation of HO-1 negatively affects miR-122-mediated suppression of HBV. Biochem Biophys Res Commun398:771–777 [CrossRef][PubMed]
    [Google Scholar]
  103. Rajendran K. V., Zhang J., Liu S., Peatman E., Kucuktas H., Wang X., Liu H., Wood T., Terhune J., Liu Z.. 2012; Pathogen recognition receptors in channel catfish: II. Identification, phylogeny and expression of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Dev Comp Immunol37:381–389 [CrossRef][PubMed]
    [Google Scholar]
  104. Roberts T. L., Idris A., Dunn J. A., Kelly G. M., Burnton C. M., Hodgson S., Hardy L. L., Garceau V., Sweet M. J., other authors. 2009; HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science323:1057–1060 [CrossRef][PubMed]
    [Google Scholar]
  105. Rodak L., Pospisil Z., Tomanek J., Vesely T., Obr T., Valicek L.. 1993; Enzyme-linked immunosorbent assay (ELISA) for the detection of spring viremia of carp virus (SVCV) in tissue homogenates of the carp, Cyprinus carpio . J Fish Dis16:101–111 [CrossRef]
    [Google Scholar]
  106. Roy P.. 1981; Phosphoproteins of spring viremia of carp virus. Virology112:274–281 [CrossRef][PubMed]
    [Google Scholar]
  107. Roy P., Clewley J. P.. 1978; Spring viremia of carp virus RNA and virion-associated transcriptase activity. J Virol25:912–916[PubMed]
    [Google Scholar]
  108. Saleh M., Soliman H., Schachner O., El-Matbouli M.. 2012; Direct detection of unamplified spring viraemia of carp virus RNA using unmodified gold nanoparticles. Dis Aquat Organ100:3–10 [CrossRef][PubMed]
    [Google Scholar]
  109. Sanders G. E., Batts W. N., Winton J. R.. 2003; Susceptibility of zebrafish (Danio rerio) to a model pathogen, spring viremia of carp virus. Comp Med53:514–521[PubMed]
    [Google Scholar]
  110. Santana S., Bullido M. J., Recuero M., Valdivieso F., Aldudo J.. 2012; Herpes simplex virus type I induces an incomplete autophagic response in human neuroblastoma cells. J Alzheimers Dis30:815–831[PubMed]
    [Google Scholar]
  111. Schnell M. J., Mebatsion T., Conzelmann K. K.. 1994; Infectious rabies viruses from cloned cDNA. EMBO J13:4195–4203[PubMed]
    [Google Scholar]
  112. Seth R. B., Sun L., Ea C. K., Chen Z. J.. 2005; Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell122:669–682 [CrossRef][PubMed]
    [Google Scholar]
  113. Shchelkunov I. S., Shchelkunova T. I.. 1989; Rhabdovirus carpio in herbivorous fishes: isolation, pathology, and comparative susceptibility of fishes. In Viruses of Lower Vertebrates pp333–348Edited by Ahne W., Kurstak E.. Berlin: Springer;[CrossRef]
    [Google Scholar]
  114. Shchelkunov I. S., Popova A. G., Shchelkunova T. I., Oreshkova S. F., Pichugina T. D., Zavyalova E. A., Borisova M. N.. 2005; First report of spring viraemia of carp virus in Moscow province Russia. Bull Eur Assoc Fish Pathol25:203–211
    [Google Scholar]
  115. Shen W., Tuo D., Yan P., Yang Y., Li X., Zhou P.. 2014; Reverse transcription loop-mediated isothermal amplification assay for rapid detection of Papaya ringspot virus. J Virol Methods204:93–100 [CrossRef][PubMed]
    [Google Scholar]
  116. Shimahara Y., Kurita J., Nishioka T., Kiryu I., Yuasa K., Sakai T., Oseko N., Sano M., Dixon P.. 2015; Development of an improved RT-PCR for specific detection of spring viraemia of carp virus. J Fish Dis39:269–275 [CrossRef][PubMed]
    [Google Scholar]
  117. Shivappa R. B., Savan R., Kono T., Sakai M., Emmenegger E., Kurath G., Levine J. F.. 2008; Detection of spring viraemia of carp virus (SVCV) by loop-mediated isothermal amplification (LAMP) in koi carp, Cyprinus carpio L. J Fish Dis31:249–258 [CrossRef][PubMed]
    [Google Scholar]
  118. Shoji-Kawata S., Levine B.. 2009; Autophagy, antiviral immunity, and viral countermeasures. Biochim Biophys Acta1793:1478–1484 [CrossRef][PubMed]
    [Google Scholar]
  119. Simora R. M., Ohtani M., Hikima J., Kondo H., Hirono I., Jung T. S., Aoki T.. 2010; Molecular cloning and antiviral activity of IFN-β promoter stimulator-1 (IPS-1) gene in Japanese flounder, Paralichthys olivaceus . Fish Shellfish Immunol29:979–986 [CrossRef][PubMed]
    [Google Scholar]
  120. Sokol F., Koprowski H.. 1975; Structure–function relationships and mode of replication of animal rhabdoviruses. Proc Natl Acad Sci U S A72:933–936 [CrossRef][PubMed]
    [Google Scholar]
  121. Stone D. M., Ahne W., Denham K. L., Dixon P. F., Liu C. T., Sheppard A. M., Taylor G. R., Way K.. 2003; Nucleotide sequence analysis of the glycoprotein gene of putative spring viraemia of carp virus and pike fry rhabdovirus isolates reveals four genogroups. Dis Aquat Organ53:203–210 [CrossRef][PubMed]
    [Google Scholar]
  122. Stone D. M., Kerr R. C., Hughes M., Radford A. D., Darby A. C.. 2013; Characterisation of the genomes of four putative vesiculoviruses: tench rhabdovirus, grass carp rhabdovirus, perch rhabdovirus and eel rhabdovirus European X. Arch Virol158:2371–2377 [CrossRef][PubMed]
    [Google Scholar]
  123. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  124. Teng Y., Liu H., Lv J. Q., Fan W. H., Zhang Q. Y., Qin Q. W.. 2007; Characterization of complete genome sequence of the spring viremia of carp virus isolated from common carp (Cyprinus carpio) in China. Arch Virol152:1457–1465 [CrossRef][PubMed]
    [Google Scholar]
  125. Tesarcik J., Macura B.. 1981; Field carp vaccination against spring viremia of the fish farms of the State Fishery. Bull VURH Vodnany17:3–11
    [Google Scholar]
  126. Tesarcik J., Macura B., Rehulka J.. 1978; Evaluation of a broader clinical experiment with the application of a biopreparation for the control of the spring viraemia of carp in 1977. Bull VURH Vodnany14:3–6
    [Google Scholar]
  127. Tonheim T. C., Bøgwald J., Dalmo R. A.. 2008; What happens to the DNA vaccine in fish? A review of current knowledge. Fish Shellfish Immunol25:1–18 [CrossRef][PubMed]
    [Google Scholar]
  128. Trapani J. A., Smyth M. J.. 2002; Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol2:735–747 [CrossRef][PubMed]
    [Google Scholar]
  129. Unterholzner L.. 2013; The interferon response to intracellular DNA: why so many receptors?. Immunobiology218:1312–1321 [CrossRef][PubMed]
    [Google Scholar]
  130. Van Reeth K.. 2000; Cytokines in the pathogenesis of influenza. Vet Microbiol74:109–116 [CrossRef][PubMed]
    [Google Scholar]
  131. Wan Q., Su J., Chen X., Yang C.. 2013; Gene-based polymorphisms, genomic organization of interferon-β promoter stimulator 1 (IPS-1) gene and association study with the natural resistance to grass carp reovirus in grass carp Ctenopharyngodon idella . Dev Comp Immunol41:756–765 [CrossRef][PubMed]
    [Google Scholar]
  132. Wang T., Secombes C. J.. 2008; Rainbow trout suppressor of cytokine signalling (SOCS)-1, 2 and 3: molecular identification, expression and modulation. Mol Immunol45:1449–1457 [CrossRef][PubMed]
    [Google Scholar]
  133. Wang Z., Choice E., Kaspar A., Hanson D., Okada S., Lyu S. C., Krensky A. M., Clayberger C.. 2000; Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J Immunol165:1486–1490 [CrossRef][PubMed]
    [Google Scholar]
  134. Wang D., Wang Y., Xiao F., Guo W., Zhang Y., Wang A., Liu Y.. 2015; A comparison of in-house real-time LAMP assays with a commercial assay for the detection of pathogenic bacteria. Molecules20:9487–9495 [CrossRef][PubMed]
    [Google Scholar]
  135. Warg J. V., Dikkeboom A. L., Goodwin A. E., Snekvik K., Whitney J.. 2007; Comparison of multiple genes of spring viremia of carp viruses isolated in the United States. Virus Genes35:87–95 [CrossRef][PubMed]
    [Google Scholar]
  136. Way K.. 1991; Rapid detection of SVC virus antigen in infected cell cultures and clinically diseased carp by enzyme-linked immunosorbent assay (ELISA). J Appl Ichthyol7:95–107 [CrossRef]
    [Google Scholar]
  137. Wong J., Zhang J., Si X., Gao G., Mao I., McManus B. M., Luo H.. 2008; Autophagosome supports coxsackievirus B3 replication in host cells. J Virol82:9143–9153 [CrossRef][PubMed]
    [Google Scholar]
  138. Xiang Z., Qi L., Chen W., Dong C., Liu Z., Liu D., Huang M., Li W., Yang G., other authors. 2011; Characterization of a TnMAVS protein from Tetraodon nigroviridis . Dev Comp Immunol35:1103–1115 [CrossRef][PubMed]
    [Google Scholar]
  139. Xiao Z. G., Liu H., Fu J. P., Hu W., Wang Y. P., Guo Q. L.. 2010; Cloning of common carp SOCS-3 gene and its expression during embryogenesis, GH-transgene and viral infection. Fish Shellfish Immunol28:362–371 [CrossRef][PubMed]
    [Google Scholar]
  140. Xiao Y., Shao L., Zhang C., An W.. 2014; Genomic evidence of homologous recombination in spring viremia of carp virus: a negatively single stranded RNA virus. Virus Res189:271–279 [CrossRef][PubMed]
    [Google Scholar]
  141. Xiong R., Nie L., Xiang L. X., Shao J. Z.. 2012; Characterization of a PIAS4 homologue from zebrafish: insights into its conserved negative regulatory mechanism in the TRIF, MAVS, and IFN signaling pathways during vertebrate evolution. J Immunol188:2653–2668 [CrossRef][PubMed]
    [Google Scholar]
  142. Xu L. G., Wang Y. Y., Han K. J., Li L. Y., Zhai Z., Shu H. B.. 2005; VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell19:727–740 [CrossRef][PubMed]
    [Google Scholar]
  143. Yachie A., Niida Y., Wada T., Igarashi N., Kaneda H., Toma T., Ohta K., Kasahara Y., Koizumi S.. 1999; Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest103:129–135 [CrossRef][PubMed]
    [Google Scholar]
  144. Yoneyama M., Kikuchi M., Matsumoto K., Imaizumi T., Miyagishi M., Taira K., Foy E., Loo Y. M., Gale M., Jr., other authors. 2005; Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol175:2851–2858 [CrossRef][PubMed]
    [Google Scholar]
  145. Yoshimura A., Naka T., Kubo M.. 2007; SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol7:454–465 [CrossRef][PubMed]
    [Google Scholar]
  146. Yuan J., Su N., Wang M., Xie P., Shi Z., Li L.. 2012; Down-regulation of heme oxygenase-1 by SVCV infection. Fish Shellfish Immunol32:301–306 [CrossRef][PubMed]
    [Google Scholar]
  147. Yuan Y., Huang X., Zhang L., Zhu Y., Huang Y., Qin Q., Hong Y.. 2013; Medaka haploid embryonic stem cells are susceptible to Singapore grouper iridovirus as well as to other viruses of aquaculture fish species. J Gen Virol94:2352–2359 [CrossRef][PubMed]
    [Google Scholar]
  148. Yue Z., Teng Y., Liang C., Xie X., Xu B., Zhu L., Lei Z., He J., Liu Z., other authors. 2008; Development of a sensitive and quantitative assay for spring viremia of carp virus based on real-time RT-PCR. J Virol Methods152:43–48 [CrossRef][PubMed]
    [Google Scholar]
  149. Zhang Q., Gui J. F.. 2015; Virus genomes and virus–host interactions in aquaculture animals. Sci China Life Sci58:156–169 [CrossRef][PubMed]
    [Google Scholar]
  150. Zhang N. Z., Zhang L. F., Jiang Y. N., Zhang T., Xia C.. 2009; Molecular analysis of spring viraemia of carp virus in China: a fatal aquatic viral disease that might spread in East Asian. PLoS One4:e6337 [CrossRef][PubMed]
    [Google Scholar]
  151. Zhang H., Zeng L., Fan Y., Zhou Y., Xu J., Ma J.. 2014; A loop-mediated isothermal amplification assay for rapid detection of cyprinid herpesvirus 2 in gibel carp (Carassius auratus gibelio). Scientific World Journal2014:716413 [CrossRef][PubMed]
    [Google Scholar]
  152. Zhao Z., Lu Y.. 2006; Establishment and characterization of two cell lines from bluefin trevally Caranx melampygus . Dis Aquat Organ68:91–100 [CrossRef][PubMed]
    [Google Scholar]
  153. Zhao Z. I, Montgomery-Brock D., Lee C. S., Lu Y.. 2004; Establishment, characterization and viral susceptibility of 3 new cell lines from snakehead, Channa striatus (Blooch). Methods Cell Sci25:155–166 [CrossRef][PubMed]
    [Google Scholar]
  154. Zhu Z., Wilson A. T., Mathahs M. M., Wen F., Brown K. E., Luxon B. A., Schmidt W. N.. 2008; Heme oxygenase-1 suppresses hepatitis C virus replication and increases resistance of hepatocytes to oxidant injury. Hepatology48:1430–1439 [CrossRef][PubMed]
    [Google Scholar]
  155. Zou P. F., Chang M. X., Xue N. N., Liu X. Q., Li J. H., Fu J. P., Chen S. N., Nie P.. 2014; Melanoma differentiation-associated gene 5 in zebrafish provoking higher interferon-promoter activity through signalling enhancing of its shorter splicing variant. Immunology141:192–202 [CrossRef][PubMed]
    [Google Scholar]
  156. Zou P. F., Chang M. X., Li Y., Huan Zhang S., Fu J. P., Chen S. N., Nie P.. 2015; Higher antiviral response of RIG-I through enhancing RIG-I/MAVS-mediated signaling by its long insertion variant in zebrafish. Fish Shellfish Immunol43:13–24 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000436
Loading
/content/journal/jgv/10.1099/jgv.0.000436
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error