1887

Abstract

Enterovirus 71 (EV71) causes life-threatening diseases with neurological manifestations in young children. However, the treatment of EV71 infections remains an unmet medical need. Idarubicin (IDR) is an anthracycline compound that is used therapeutically for certain types of tumour. In this study, we identified IDR as an EV71 inhibitor, which displayed antiviral potency in the submicromolar range and substantially protected cells from the cytopathic effects and cell death caused by EV71 infections. The antiviral effects extended to several other enterovirus (EV) species, and these effects were independent of cytotoxicity or topoisomerase inhibition. Structure–activity relationship studies indicated the importance of the anthracycline scaffold for anti-EV potency. IDR effectively blocked the synthesis of viral protein and RNA, but not the viral proteolysis processes. Moreover, anthracyclines were demonstrated to suppress EV internal ribosomal entry site (IRES)-mediated translation; conversely, the cellular p53 IRES activity was not sensitive to IDR action. Inhibition of IRES-mediated translation by IDR correlated with the affinity of binding between IDR and the particular IRES. Moreover, IDR impaired binding between the EV71 IRES RNA and hnRNP A1, a known host IRES -acting factor. In sum, we have identified a USA FDA-approved anticancer drug with the new indication as a selective EV IRES binder and inhibitor. The finding may also provide leads for the development of novel antiviral therapies directed at the EV IRES RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000431
2016-05-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1122.html?itemId=/content/journal/jgv/10.1099/jgv.0.000431&mimeType=html&fmt=ahah

References

  1. Ashburn T. T., Thor K. B.. ( 2004;). Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3: 673–683 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baker S. J., Markowitz S., Fearon E. R., Willson J. K., Vogelstein B.. ( 1990;). Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249: 912–915 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bedard K. M., Semler B. L.. ( 2004;). Regulation of picornavirus gene expression. Microbes Infect 6: 702–713 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bible J. M., Pantelidis P., Chan P. K., Tong C. Y.. ( 2007;). Genetic evolution of enterovirus 71: epidemiological and pathological implications. Rev Med Virol 17: 371–379 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chaires J. B.. ( 2005;). Competition dialysis: an assay to measure the structural selectivity of drug-nucleic acid interactions. Curr Med Chem Anticancer Agents 5: 339–352 [CrossRef] [PubMed].
    [Google Scholar]
  6. Charak S., Mehrotra R.. ( 2013;). Structural investigation of idarubicin–DNA interaction: spectroscopic and molecular docking study. Int J Biol Macromol 60: 213–218 [CrossRef] [PubMed].
    [Google Scholar]
  7. Créancier L., Morello D., Mercier P., Prats A. C.. ( 2000;). Fibroblast growth factor 2 internal ribosome entry site (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. J Cell Biol 150: 275–281 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gasparian A. V., Neznanov N., Jha S., Galkin O., Moran J. J., Gudkov A. V., Gurova K. V., Komar A. A.. ( 2010;). Inhibition of encephalomyocarditis virus and poliovirus replication by quinacrine: implications for the design and discovery of novel antiviral drugs. J Virol 84: 9390–9397 [CrossRef] [PubMed].
    [Google Scholar]
  9. Graber T. E., Holcik M.. ( 2007;). Cap-independent regulation of gene expression in apoptosis. Mol Biosyst 3: 825–834 [CrossRef] [PubMed].
    [Google Scholar]
  10. Harake D., Franco V. I., Henkel J. M., Miller T. L., Lipshultz S. E.. ( 2012;). Cardiotoxicity in childhood cancer survivors: strategies for prevention and management. Future Cardiol 8: 647–670 [CrossRef] [PubMed].
    [Google Scholar]
  11. Ho M., Chen E. R., Hsu K. H., Twu S. J., Chen K. T., Tsai S. F., Wang J. R., Shih S. R., Taiwan Enterovirus Epidemic Working Group. ( 1999;). An epidemic of enterovirus 71 infection in Taiwan. N Engl J Med 341: 929–935 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hsu Y. Y., Liu Y. N., Wang W., Kao F. J., Kung S. H.. ( 2007;). In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair. Biochem Biophys Res Commun 353: 939–945 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hsu Y. Y., Liu Y. N., Lu W. W., Kung S. H.. ( 2009;). Visualizing and quantifying the differential cleavages of the eukaryotic translation initiation factors eIF4GI and eIF4GII in the enterovirus-infected cell. Biotechnol Bioeng 104: 1142–1152 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kizek R., Adam V., Hrabeta J., Eckschlager T., Smutny S., Burda J. V., Frei E., Stiborova M.. ( 2012;). Anthracyclines and ellipticines as DNA-damaging anticancer drugs: recent advances. Pharmacol Ther 133: 26–39 [CrossRef] [PubMed].
    [Google Scholar]
  15. Komar A. A., Hatzoglou M.. ( 2011;). Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10: 229–240 [CrossRef] [PubMed].
    [Google Scholar]
  16. Leong S. Y., Ong B. K., Chu J. J.. ( 2015;). The role of misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human enterovirus 71. PLoS Pathog 11: e1004686 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lin J. Y., Li M. L., Shih S. R.. ( 2009a;). Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Res 37: 47–59 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lin J. Y., Shih S. R., Pan M., Li C., Lue C. F., Stollar V., Li M. L.. ( 2009b;). hnRNP A1 interacts with the 5′ untranslated regions of enterovirus 71 and Sindbis virus RNA and is required for viral replication. J Virol 83: 6106–6114 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lipshultz S. E., Rifai N., Dalton V. M., Levy D. E., Silverman L. B., Lipsitz S. R., Colan S. D., Asselin B. L., Barr R. D., other authors. ( 2004;). The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351: 145–153 [CrossRef] [PubMed].
    [Google Scholar]
  20. Liu S. L., Pan H., Liu P., Amer S., Chan T. C., Zhan J., Huo X., Liu Y., Teng Z., other authors. ( 2015;). Comparative epidemiology and virology of fatal and nonfatal cases of hand, foot and mouth disease in mainland China from 2008 to 2014. Rev Med Virol 25: 115–128 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lu W. W., Hsu Y. Y., Yang J. Y., Kung S. H.. ( 2004;). Selective inhibition of enterovirus 71 replication by short hairpin RNAs. Biochem Biophys Res Commun 325: 494–499 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lu J. R., Lu W. W., Lai J. Z., Tsai F. L., Wu S. H., Lin C. W., Kung S. H.. ( 2013;). Calcium flux and calpain-mediated activation of the apoptosis-inducing factor contribute to enterovirus 71-induced apoptosis. J Gen Virol 94: 1477–1485 [CrossRef] [PubMed].
    [Google Scholar]
  23. Martincic D., Hande K. R.. ( 2005;). Topoisomerase II inhibitors. Cancer Chemother Biol Response Modif 22: 101–121 [CrossRef] [PubMed].
    [Google Scholar]
  24. Niepmann M.. ( 2009;). Internal translation initiation of picornaviruses and hepatitis C virus. Biochim Biophys Acta 1789: 529–541 [CrossRef] [PubMed].
    [Google Scholar]
  25. Norder H., De Palma A. M., Selisko B., Costenaro L., Papageorgiou N., Arnan C., Coutard B., Lantez V., De Lamballerie X., other authors. ( 2011;). Picornavirus non-structural proteins as targets for new anti-virals with broad activity. Antiviral Res 89: 204–218 [CrossRef] [PubMed].
    [Google Scholar]
  26. Ozluer C., Kara H. E.. ( 2014;). In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques. J Photochem Photobiol B 138: 36–42 [CrossRef] [PubMed].
    [Google Scholar]
  27. Patel D. A., Patel A. C., Nolan W. C., Zhang Y., Holtzman M. J.. ( 2012;). High throughput screening for small molecule enhancers of the interferon signaling pathway to drive next-generation antiviral drug discovery. PLoS One 7: e36594 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ren J., Chaires J. B.. ( 2001;). Rapid screening of structurally selective ligand binding to nucleic acids. Methods Enzymol 340: 99–108 [CrossRef] [PubMed].
    [Google Scholar]
  29. Rhoades R. E., Tabor-Godwin J. M., Tsueng G., Feuer R.. ( 2011;). Enterovirus infections of the central nervous system. Virology 411: 288–305 [CrossRef] [PubMed].
    [Google Scholar]
  30. Schneider R. J., Mohr I.. ( 2003;). Translation initiation and viral tricks. Trends Biochem Sci 28: 130–136 [CrossRef] [PubMed].
    [Google Scholar]
  31. Sharathchandra A., Katoch A., Das S.. ( 2014;). IRES mediated translational regulation of p53 isoforms. Wiley Interdiscip Rev RNA 5: 131–139 [CrossRef] [PubMed].
    [Google Scholar]
  32. Shih S. R., Stollar V., Li M. L.. ( 2011;). Host factors in enterovirus 71 replication. J Virol 85: 9658–9666 [CrossRef] [PubMed].
    [Google Scholar]
  33. Solomon T., Lewthwaite P., Perera D., Cardosa M. J., McMinn P., Ooi M. H.. ( 2010;). Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10: 778–790 [CrossRef] [PubMed].
    [Google Scholar]
  34. Teuffel O., Leibundgut K., Lehrnbecher T., Alonzo T. A., Beyene J., Sung L.. ( 2013;). Anthracyclines during induction therapy in acute myeloid leukaemia: a systematic review and meta-analysis. Br J Haematol 161: 192–203 [CrossRef] [PubMed].
    [Google Scholar]
  35. Thibaut H. J., De Palma A. M., Neyts J.. ( 2012;). Combating enterovirus replication: state-of-the-art on antiviral research. Biochem Pharmacol 83: 185–192 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tsai M. T., Cheng Y. H., Liu Y. N., Liao N. C., Lu W. W., Kung S. H.. ( 2009;). Real-time monitoring of human enterovirus (HEV)-infected cells and anti-HEV 3C protease potency by fluorescence resonance energy transfer. Antimicrob Agents Chemother 53: 748–755 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wang J., Du J., Wu Z., Jin Q.. ( 2013;). Quinacrine impairs enterovirus 71 RNA replication by preventing binding of polypyrimidine-tract binding protein with internal ribosome entry sites. PLoS One 8: e52954 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000431
Loading
/content/journal/jgv/10.1099/jgv.0.000431
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error