1887

Abstract

A novel flavivirus, provisionally named Bamaga virus (BgV), was isolated from mosquitoes collected from northern Australia. Phylogenetic analysis of the complete nucleotide sequence of the BgV genome revealed it clustered with the yellow fever virus (YFV) group, and was most closely related to Edge Hill virus (EHV), another Australian flavivirus, with 61.9 % nucleotide and 63.7 % amino acid sequence identity. Antigenic analysis of the envelope and pre-membrane proteins of BgV further revealed epitopes common to EHV, dengue and other mosquito-borne flaviviruses. However, in contrast to these viruses, BgV displayed restricted growth in a range of vertebrate cell lines with no or relatively slow replication in inoculated cultures. There was also restricted BgV replication in virus-challenged mice. Our results indicate that BgV is an evolutionary divergent member of the YFV group of flaviviruses, and represents a novel system to study mechanisms of virus host-restriction and transmission.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000430
2016-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1087.html?itemId=/content/journal/jgv/10.1099/jgv.0.000430&mimeType=html&fmt=ahah

References

  1. Blitvich B. J. , Firth A. E. . ( 2015;). Insect-specific flaviviruses: a systematic review of their discovery, host range, mode of transmission, superinfection exclusion potential and genomic organization. Viruses 7: 1927–1959 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bolling B. G. , Olea-Popelka F. J. , Eisen L. , Moore C. G. , Blair C. D. . ( 2012;). Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology 427: 90–97 [CrossRef] [PubMed].
    [Google Scholar]
  3. Broom A. K. , Hall R. A. , Johansen C. A. , Oliveira N. , Howard M. A. , Lindsay M. D. , Kay B. H. , Mackenzie J. S. . ( 1998;). Identification of Australian arboviruses in inoculated cell cultures using monoclonal antibodies in ELISA. Pathology 30: 286–288 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chambers T. J. , Hahn C. S. , Galler R. , Rice C. M. . ( 1990;). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44: 649–688 [CrossRef] [PubMed].
    [Google Scholar]
  5. Edgar R. C. . ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 [CrossRef] [PubMed].
    [Google Scholar]
  6. Falconar A. K. . ( 1999;). Identification of an epitope on the dengue virus membrane (M) protein defined by cross-protective monoclonal antibodies: design of an improved epitope sequence based on common determinants present in both envelope (E and M) proteins. Arch Virol 144: 2313–2330 [CrossRef] [PubMed].
    [Google Scholar]
  7. Gentry M. K. , Henchal E. A. , McCown J. M. , Brandt W. E. , Dalrymple J. M. . ( 1982;). Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am J Trop Med Hyg 31: 548–555 [PubMed].
    [Google Scholar]
  8. Goenaga S. , Kenney J. L. , Duggal N. K. , Delorey M. , Ebel G. D. , Zhang B. , Levis S. C. , Enria D. A. , Brault A. C. . ( 2015;). Potential for co-infection of a mosquito-specific flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses 7: 5801–5812 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hall R. A. , Kay B. H. , Burgess G. W. , Clancy P. , Fanning I. D. . ( 1990;). Epitope analysis of the envelope and non-structural glycoproteins of Murray Valley encephalitis virus. J Gen Virol 71: 2923–2930 [CrossRef] [PubMed].
    [Google Scholar]
  10. Hall R. A. , Burgess G. W. , Kay B. H. , Clancy P. . ( 1991;). Monoclonal antibodies to Kunjin and Kokobera viruses. Immunol Cell Biol 69: 47–49 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hall R. A. , Scherret J. H. , Sedlak P. , Poidinger M. , Mackenzie J. S. . ( 1999;). Isolation of homologous arbovirus cultures from heterologous mixtures using limit dilution and virus-specific enzyme immunoassays. J Virol Methods 83: 189–192 [CrossRef] [PubMed].
    [Google Scholar]
  12. Henchal E. A. , Gentry M. K. , McCown J. M. , Brandt W. E. . ( 1982;). Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. Am J Trop Med Hyg 31: 830–836 [PubMed].
    [Google Scholar]
  13. Henchal E. A. , McCown J. M. , Burke D. S. , Seguin M. C. , Brandt W. E. . ( 1985;). Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am J Trop Med Hyg 34: 162–169 [PubMed].
    [Google Scholar]
  14. Hobson-Peters J. , Yam A. W. Y. , Lu J. W. F. , Setoh Y. X. , May F. J. , Kurucz N. , Walsh S. , Prow N. A. , Davis S. S. , other authors . ( 2013;). A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells. PLoS One 8: e56534 [CrossRef] [PubMed].
    [Google Scholar]
  15. Huelsenbeck J. P. , Ronquist F. . ( 2001;). mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755 [CrossRef] [PubMed].
    [Google Scholar]
  16. Jansen C. C. , Webb C. E. , Northill J. A. , Ritchie S. A. , Russell R. C. , Van den Hurk A. F. . ( 2008;). Vector competence of Australian mosquito species for a North American strain of West Nile virus. Vector Borne Zoonotic Dis 8: 805–812 [CrossRef] [PubMed].
    [Google Scholar]
  17. Jansen C. C. , Hemmerter S. , van den Hurk A. F. , Whelan P. I. , Beebe N. W. . ( 2013;). Morphological versus molecular identification of Culex annulirostris Skuse and Culex palpalis Taylor: key members of the Culex sitiens (Diptera: Culicidae) subgroup in Australasia. Aust J Entomol 52: 356–362 [CrossRef].
    [Google Scholar]
  18. Kay B. H. , Fanning I. D. , Carley J. G. . ( 1984;). The vector competence of Australian Culex annulirostris with Murray Valley encephalitis and Kunjin viruses. Aust J Exp Biol Med Sci 62: 641–650 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kay B. H. , Boyd A. M. , Ryan P. A. , Hall R. A. . ( 2007;). Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia. Am J Trop Med Hyg 76: 417–423 [PubMed].
    [Google Scholar]
  20. Kent R. J. , Crabtree M. B. , Miller B. R. . ( 2010;). Transmission of West Nile virus by Culex quinquefasciatus Say infected with Culex flavivirus Izabal. PLoS Negl Trop Dis 4: e671 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kuno G. , Chang G.-J.J. , Tsuchiya K. R. , Karabatsos N. , Cropp C. B. . ( 1998;). Phylogeny of the genus Flavivirus . J Virol 72: 73–83 [PubMed].
    [Google Scholar]
  22. Macdonald J. , Tonry J. , Hall R. A. , Williams B. , Palacios G. , Ashok M. S. , Jabado O. , Clark D. , Tesh R. B. , other authors . ( 2005;). NS1 protein secretion during the acute phase of West Nile virus infection. J Virol 79: 13924–13933 [CrossRef] [PubMed].
    [Google Scholar]
  23. Macdonald J. , Poidinger M. , Mackenzie J. S. , Russell R. C. , Doggett S. , Broom A. K. , Phillips D. , Potamski J. , Gard G. , other authors . ( 2010;). Molecular phylogeny of edge hill virus supports its position in the yellow fever virus group and identifies a new genetic variant. Evol Bioinform Online 6: 91–96 [PubMed].
    [Google Scholar]
  24. Mackenzie J. S. , Gubler D. J. , Petersen L. R. . ( 2004;). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10: (Suppl.), S98–S109 [CrossRef] [PubMed].
    [Google Scholar]
  25. McLean B. J. , Hobson-Peters J. , Webb C. E. , Watterson D. , Prow N. A. , Nguyen H. D. , Hall-Mendelin S. , Warrilow D. , Johansen C. A. , other authors . ( 2015;). A novel insect-specific flavivirus replicates only in Aedes-derived cells and persists at high prevalence in wild Aedes vigilax populations in Sydney, Australia. Virology 486: 272–283 [CrossRef] [PubMed].
    [Google Scholar]
  26. Nisbet D. J. , Lee K. J. , van den Hurk A. F. , Johansen C. A. , Kuno G. , Chang G. J. , Mackenzie J. S. , Ritchie S. A. , Hall R. A. . ( 2005;). Identification of new flaviviruses in the Kokobera virus complex. J Gen Virol 86: 121–124 [CrossRef] [PubMed].
    [Google Scholar]
  27. O'Brien C. A. , Hobson-Peters J. , Yam A. W. Y. , Colmant A. M. G. , McLean B. J. , Prow N. A. , Watterson D. , Hall-Mendelin S. , Warrilow D. , other authors . ( 2015;). Viral RNA intermediates as targets for detection and discovery of novel and emerging mosquito-borne viruses. PLoS Negl Trop Dis 9: e0003629 [CrossRef] [PubMed].
    [Google Scholar]
  28. Prow N. A. , Setoh Y. X. , Biron R. M. , Sester D. P. , Kim K. S. , Hobson-Peters J. , Hall R. A. , Bielefeldt-Ohmann H. . ( 2014;). The West Nile virus-like flavivirus Koutango is highly virulent in mice due to delayed viral clearance and the induction of a poor neutralizing antibody response. J Virol 88: 9947–9962 [CrossRef] [PubMed].
    [Google Scholar]
  29. Pyke A. T. , Smith I. L. , van den Hurk A. F. , Northill J. A. , Chuan T. F. , Westacott A. J. , Smith G. A. . ( 2004;). Detection of Australasian Flavivirus encephalitic viruses using rapid fluorogenic TaqMan RT-PCR assays. J Virol Methods 117: 161–167 [CrossRef] [PubMed].
    [Google Scholar]
  30. Reed L. J. , Muench H. . ( 1938;). A simple method of estimating fifty per cent endpoints. Am J Hyg 27: 493–497.
    [Google Scholar]
  31. Ritchie S. A. , Fanning I. D. , Phillips D. A. , Standfast H. A. , McGinn D. , Kay B. H. . ( 1997a;). Ross River virus in mosquitoes (Diptera: Culicidae) during the 1994 epidemic around Brisbane, Australia. J Med Entomol 34: 156–159 [CrossRef] [PubMed].
    [Google Scholar]
  32. Ritchie S. A. , Phillips D. , Broom A. , Mackenzie J. , Poidinger M. , van den Hurk A. . ( 1997b;). Isolation of Japanese encephalitis virus from Culex annulirostris in Australia. Am J Trop Med Hyg 56: 80–84 [PubMed].
    [Google Scholar]
  33. Sánchez M. D. , Pierson T. C. , McAllister D. , Hanna S. L. , Puffer B. A. , Valentine L. E. , Murtadha M. M. , Hoxie J. A. , Doms R. W. . ( 2005;). Characterization of neutralizing antibodies to West Nile virus. Virology 336: 70–82 [CrossRef] [PubMed].
    [Google Scholar]
  34. Scaramozzino N. , Crance J. M. , Jouan A. , DeBriel D. A. , Stoll F. , Garin D. . ( 2001;). Comparison of flavivirus universal primer pairs and development of a rapid, highly sensitive heminested reverse transcription-PCR assay for detection of flaviviruses targeted to a conserved region of the NS5 gene sequences. J Clin Microbiol 39: 1922–1927 [CrossRef] [PubMed].
    [Google Scholar]
  35. Suen W. W. , Prow N. A. , Setoh Y. X. , Hall R. A. , Bielefeldt-Ohmann H. . ( 2016;). End-point disease investigation for virus strains of intermediate virulence as illustrated by flavivirus infections. J Gen Virol 97: 366–377 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thibodeaux B. A. , Roehrig J. T. . ( 2009;). Development of a human-murine chimeric immunoglobulin M antibody for use in the serological detection of human flavivirus antibodies. Clin Vaccine Immunol 16: 679–685 [CrossRef] [PubMed].
    [Google Scholar]
  37. van den Hurk A. F. , Johansen C. A. , Zborowski P. , Paru R. , Foley P. N. , Beebe N. W. , Mackenzie J. S. , Ritchie S. A. . ( 2003;). Mosquito host-feeding patterns and implications for Japanese encephalitis virus transmission in northern Australia and Papua New Guinea. Med Vet Entomol 17: 403–411 [CrossRef] [PubMed].
    [Google Scholar]
  38. van den Hurk A. F. , Montgomery B. L. , Northill J. A. , Smith I. L. , Zborowski P. , Ritchie S. A. , Mackenzie J. S. , Smith G. A. . ( 2006;). Short report: the first isolation of Japanese encephalitis virus from mosquitoes collected from mainland Australia. Am J Trop Med Hyg 75: 21–25 [PubMed].
    [Google Scholar]
  39. van den Hurk A. F. , Smith I. L. , Smith G. A. . ( 2007;). Development and evaluation of real-time polymerase chain reaction assays to identify mosquito (Diptera: Culicidae) bloodmeals originating from native Australian mammals. J Med Entomol 44: 85–92 [CrossRef] [PubMed].
    [Google Scholar]
  40. von Heijne G. . ( 1984;). How signal sequences maintain cleavage specificity. J Mol Biol 173: 243–251 [CrossRef] [PubMed].
    [Google Scholar]
  41. Westaway E. G. . ( 2011;). Flaviviruses. In. The Springer Index of Viruses, pp. 461–471 New York: Springer;.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000430
Loading
/content/journal/jgv/10.1099/jgv.0.000430
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error