1887

Abstract

Glycoprotein B (gB) of equine herpesvirus type 1 (EHV-1) is predicted to be cleaved by furin in a fashion similar to that of related herpesviruses. To investigate the contribution of furin-mediated gB cleavage to EHV-1 growth, canonical furin cleavage sites were mutated. Western blot analysis of mutated EHV-1 gB showed that it was cleaved at two positions, RRRR and RLHK, and that the 28 aa between the two sites were removed after cleavage. Treating infected cells with either convertase or furin inhibitors reduced gB cleavage efficiency. Further, removal of the first furin recognition motif did not affect growth of EHV-1, while mutation of the second motif greatly affected virus growth. In addition, a second possible signal peptide cleavage site was identified for EHV-1 gB between residues 98 and 99, which was 13 aa downstream of that previously identified.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000418
2016-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1218.html?itemId=/content/journal/jgv/10.1099/jgv.0.000418&mimeType=html&fmt=ahah

References

  1. Allen G. P., Yeargan M. R.. ( 1987;). Use of lambda gt11 and monoclonal antibodies to map the genes for the six major glycoproteins of equine herpesvirus 1. J Virol 61: 2454–2461 [PubMed].
    [Google Scholar]
  2. Azab W., Osterrieder N.. ( 2012;). Glycoproteins D of equine herpesvirus type 1 (EHV-1) and EHV-4 determine cellular tropism independently of integrins. J Virol 86: 2031–2044 [CrossRef] [PubMed].
    [Google Scholar]
  3. Azab W., Kato K., Arii J., Tsujimura K., Yamane D., Tohya Y., Matsumura T., Akashi H.. ( 2009;). Cloning of the genome of equine herpesvirus 4 strain TH20p as an infectious bacterial artificial chromosome. Arch Virol 154: 833–842 [CrossRef] [PubMed].
    [Google Scholar]
  4. Azab W., Tsujimura K., Maeda K., Kobayashi K., Mohamed Y. M., Kato K., Matsumura T., Akashi H.. ( 2010;). Glycoprotein C of equine herpesvirus 4 plays a role in viral binding to cell surface heparan sulfate. Virus Res 151: 1–9 [CrossRef] [PubMed].
    [Google Scholar]
  5. Azab W., Tsujimura K., Kato K., Arii J., Morimoto T., Kawaguchi Y., Tohya Y., Matsumura T., Akashi H.. ( 2010a;). Characterization of a thymidine kinase-deficient mutant of equine herpesvirus 4 and in vitro susceptibility of the virus to antiviral agents. Antiviral Res 85: 389–395 [CrossRef] [PubMed].
    [Google Scholar]
  6. Backovic M., Leser G. P., Lamb R. A., Longnecker R., Jardetzky T. S.. ( 2007;). Characterization of EBV gB indicates properties of both class I and class II viral fusion proteins. Virology 368: 102–113 [CrossRef] [PubMed].
    [Google Scholar]
  7. Belouzard S., Chu V. C., Whittaker G. R.. ( 2009;). Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 106: 5871–5876 [CrossRef] [PubMed].
    [Google Scholar]
  8. Belouzard S., Millet J. K., Licitra B. N., Whittaker G. R.. ( 2012;). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4: 1011–1033 [CrossRef] [PubMed].
    [Google Scholar]
  9. Borchers K., Thein R., Sterner-Kock A.. ( 2006;). Pathogenesis of equine herpesvirus-associated neurological disease: a revised explanation. Equine Vet J 38: 283–287 [CrossRef] [PubMed].
    [Google Scholar]
  10. Bosshart H., Humphrey J., Deignan E., Davidson J., Drazba J., Yuan L., Oorschot V., Peters P. J., Bonifacino J. S.. ( 1994;). The cytoplasmic domain mediates localization of furin to the trans-Golgi network en route to the endosomal/lysosomal system. J Cell Biol 126: 1157–1172 [CrossRef] [PubMed].
    [Google Scholar]
  11. Cai W. H., Gu B., Person S.. ( 1988;). Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol 62: 2596–2604 [PubMed].
    [Google Scholar]
  12. Claesson-Welsh L., Spear P. G.. ( 1986;). Oligomerization of herpes simplex virus glycoprotein B. J Virol 60: 803–806 [PubMed].
    [Google Scholar]
  13. Csellner H., Walker C., Wellington J. E., McLure L. E., Love D. N., Whalley J. M.. ( 2000;). EHV-1 glycoprotein D (EHV-1 gD) is required for virus entry and cell-cell fusion, and an EHV-1 gD deletion mutant induces a protective immune response in mice. Arch Virol 145: 2371–2385 [CrossRef] [PubMed].
    [Google Scholar]
  14. Czupalla C., Nürnberg B., Krause E.. ( 2003;). Analysis of class I phosphoinositide 3-kinase autophosphorylation sites by mass spectrometry. Rapid Commun Mass Spectrom 17: 690–696 [CrossRef] [PubMed].
    [Google Scholar]
  15. Distler J. H., Jüngel A., Kurowska-Stolarska M., Michel B. A., Gay R. E., Gay S., Distler O.. ( 2005;). Nucleofection: a new, highly efficient transfection method for primary human keratinocytes*. Exp Dermatol 14: 315–320 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gilkerson J. R., Love D. N., Whalley J. M.. ( 1998;). Epidemiology of equine herpesvirus abortion: searching for clues to the future. Aust Vet J 76: 675–676 [CrossRef] [PubMed].
    [Google Scholar]
  17. Glauser D. L., Milho R., Frederico B., May J. S., Kratz A. S., Gillet L., Stevenson P. G.. ( 2013;). Glycoprotein B cleavage is important for murid herpesvirus 4 to infect myeloid cells. J Virol 87: 10828–10842 [CrossRef] [PubMed].
    [Google Scholar]
  18. González-Reyes L., Ruiz-Argüello M. B., García-Barreno B., Calder L., López J. A., Albar J. P., Skehel J. J., Wiley D. C., Melero J. A.. ( 2001;). Cleavage of the human respiratory syncytial virus fusion protein at two distinct sites is required for activation of membrane fusion. Proc Natl Acad Sci U S A 98: 9859–9864 [CrossRef] [PubMed].
    [Google Scholar]
  19. Goodman L. B., Loregian A., Perkins G. A., Nugent J., Buckles E. L., Mercorelli B., Kydd J. H., Palù G., Smith K. C., other authors. ( 2007;). A point mutation in a herpesvirus polymerase determines neuropathogenicity. PLoS Pathog 3: e160 [CrossRef] [PubMed].
    [Google Scholar]
  20. Gu F., Crump C. M., Thomas G.. ( 2001;). Trans-Golgi network sorting. Cell Mol Life Sci 58: 1067–1084 [CrossRef] [PubMed].
    [Google Scholar]
  21. Hallenberger S., Bosch V., Angliker H., Shaw E., Klenk H. D., Garten W.. ( 1992;). Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360: 358–361 [CrossRef] [PubMed].
    [Google Scholar]
  22. Herrold R. E., Marchini A., Fruehling S., Longnecker R.. ( 1996;). Glycoprotein 110, the Epstein-Barr virus homolog of herpes simplex virus glycoprotein B, is essential for Epstein-Barr virus replication in vivo. J Virol 70: 2049–2054 [PubMed].
    [Google Scholar]
  23. Kopp A., Blewett E., Misra V., Mettenleiter T. C.. ( 1994;). Proteolytic cleavage of bovine herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or pseudorabies virus. J Virol 68: 1667–1674 [PubMed].
    [Google Scholar]
  24. Lee E. C., Yu D., Martinez de Velasco J., Tessarollo L., Swing D. A., Court D. L., Jenkins N. A., Copeland N. G.. ( 2001;). A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73: 56–65 [CrossRef] [PubMed].
    [Google Scholar]
  25. Ma G., Azab W., Osterrieder N.. ( 2013;). Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4)–masters of co-evolution and a constant threat to equids and beyond. Vet Microbiol 167: 123–134 [CrossRef] [PubMed].
    [Google Scholar]
  26. Meindl A., Osterrieder N.. ( 1999;). The equine herpesvirus 1 Us2 homolog encodes a nonessential membrane-associated virion component. J Virol 73: 3430–3437 [PubMed].
    [Google Scholar]
  27. Molloy S. S., Bresnahan P. A., Leppla S. H., Klimpel K. R., Thomas G.. ( 1992;). Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 267: 16396–16402 [PubMed].
    [Google Scholar]
  28. Neubauer A., Braun B., Brandmuller C., Kaaden O. R., Osterrieder N.. ( 1997;). Analysis of the contributions of the equine herpesvirus 1 glycoprotein gB homolog to virus entry and direct cell-to-cell spread. Virology 227: 281–294 [CrossRef] [PubMed].
    [Google Scholar]
  29. Okazaki K.. ( 2007;). Proteolytic cleavage of glycoprotein B is dispensable for in vitro replication, but required for syncytium formation of pseudorabies virus. J Gen Virol 88: 1859–1865 [CrossRef] [PubMed].
    [Google Scholar]
  30. Oliver S. L., Sommer M., Zerboni L., Rajamani J., Grose C., Arvin A. M.. ( 2009;). Mutagenesis of varicella-zoster virus glycoprotein B: putative fusion loop residues are essential for viral replication, and the furin cleavage motif contributes to pathogenesis in skin tissue in vivo. J Virol 83: 7495–7506 [CrossRef] [PubMed].
    [Google Scholar]
  31. Peeters B., de Wind N., Hooisma M., Wagenaar F., Gielkens A., Moormann R.. ( 1992;). Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus penetration, but only gII is involved in membrane fusion. J Virol 66: 894–905 [PubMed].
    [Google Scholar]
  32. Pusterla N., David Wilson W., Madigan J. E., Ferraro G. L.. ( 2009;). Equine herpesvirus-1 myeloencephalopathy: a review of recent developments. Vet J 180: 279–289 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rauh I., Mettenleiter T. C.. ( 1991;). Pseudorabies virus glycoproteins gII and gp50 are essential for virus penetration. J Virol 65: 5348–5356 [PubMed].
    [Google Scholar]
  34. Rudolph J., O'Callaghan D. J., Osterrieder N.. ( 2002;). Cloning of the genomes of equine herpesvirus type 1 (EHV-1) strains KyA and racL11 as bacterial artificial chromosomes (BAC). J Vet Med B Infect Dis Vet Public Health 49: 31–36 [CrossRef] [PubMed].
    [Google Scholar]
  35. Seidah N. G., Benjannet S., Hamelin J., Mamarbachi A. M., Basak A., Marcinkiewicz J., Mbikay M., Chrétien M., Marcinkiewicz M.. ( 1999;). The subtilisin/kexin family of precursor convertases. Emphasis on PC1, PC2/7B2, POMC and the novel enzyme SKI-1. Ann N Y Acad Sci 885: 57–74 [CrossRef] [PubMed].
    [Google Scholar]
  36. Smith K. C., Borchers K.. ( 2001;). A study of the pathogenesis of equid herpesvirus-1 (EHV-1) abortion by DNA in-situ hybridization. J Comp Pathol 125: 304–310 [CrossRef] [PubMed].
    [Google Scholar]
  37. Smith K. C., Whitwell K. E., Blunden A. S., Bestbier M. E., Scase T. J., Geraghty R. J., Nugent J., Davis-Poynter N. J., Cardwell J. M.. ( 2004;). Equine herpesvirus-1 abortion: atypical cases with lesions largely or wholly restricted to the placenta. Equine Vet J 36: 79–82 [CrossRef] [PubMed].
    [Google Scholar]
  38. Sorem J., Longnecker R.. ( 2009;). Cleavage of Epstein-Barr virus glycoprotein B is required for full function in cell-cell fusion with both epithelial and B cells. J Gen Virol 90: 591–595 [CrossRef] [PubMed].
    [Google Scholar]
  39. Spiesschaert B., Osterrieder N., Azab W.. ( 2015;). Comparative analysis of glycoprotein B (gB) of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in cellular tropism and cell-to-cell transmission. Viruses 7: 522–542 [CrossRef] [PubMed].
    [Google Scholar]
  40. Stieneke-Gröber A., Vey M., Angliker H., Shaw E., Thomas G., Roberts C., Klenk H. D., Garten W.. ( 1992;). Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J 11: 2407–2414 [PubMed].
    [Google Scholar]
  41. Stokes A., Alber D. G., Greensill J., Amellal B., Carvalho R., Taylor L. A., Doel T. R., Killington R. A., Halliburton I. W., Meredith D. M.. ( 1996;). The expression of the proteins of equine herpesvirus 1 which share homology with herpes simplex virus 1 glycoproteins H and L. Virus Res 40: 91–107 [CrossRef] [PubMed].
    [Google Scholar]
  42. Strive T., Borst E., Messerle M., Radsak K.. ( 2002;). Proteolytic processing of human cytomegalovirus glycoprotein B is dispensable for viral growth in culture. J Virol 76: 1252–1264 [CrossRef] [PubMed].
    [Google Scholar]
  43. Sullivan D. C., Allen G. P., O'Callaghan D. J.. ( 1989;). Synthesis and processing of equine herpesvirus type 1 glycoprotein 14. Virology 173: 638–646 [CrossRef] [PubMed].
    [Google Scholar]
  44. Thaa B., Sinhadri B. C., Tielesch C., Krause E., Veit M.. ( 2013;). Signal peptide cleavage from GP5 of PRRSV: a minor fraction of molecules retains the decoy epitope, a presumed molecular cause for viral persistence. PLoS One 8: e65548 [CrossRef] [PubMed].
    [Google Scholar]
  45. Thomas G.. ( 2002;). Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3: 753–766 [CrossRef] [PubMed].
    [Google Scholar]
  46. Tischer B. K., von Einem J., Kaufer B., Osterrieder N.. ( 2006;). Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40: 191–197 [CrossRef] [PubMed].
    [Google Scholar]
  47. Volchkov V. E., Feldmann H., Volchkova V. A., Klenk H. D.. ( 1998;). Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A 95: 5762–5767 [CrossRef] [PubMed].
    [Google Scholar]
  48. von Einem J., Smith P. M., Van de Walle G. R., O'Callaghan D. J., Osterrieder N.. ( 2007;). In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology 362: 151–162 [CrossRef] [PubMed].
    [Google Scholar]
  49. Wellington J. E., Gooley A. A., Love D. N., Whalley J. M.. ( 1996a;). N-terminal sequence analysis of equine herpesvirus 1 glycoproteins D and B and evidence for internal cleavage of the gene 71 product. J Gen Virol 77: 75–82 [CrossRef] [PubMed].
    [Google Scholar]
  50. Wellington J. E., Love D. N., Whalley J. M.. ( 1996b;). Evidence for involvement of equine herpesvirus 1 glycoprotein B in cell-cell fusion. Arch Virol 141: 167–175 [CrossRef] [PubMed].
    [Google Scholar]
  51. Wise R. J., Barr P. J., Wong P. A., Kiefer M. C., Brake A. J., Kaufman R. J.. ( 1990;). Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci U S A 87: 9378–9382 [CrossRef] [PubMed].
    [Google Scholar]
  52. Zimmer G., Budz L., Herrler G.. ( 2001;). Proteolytic activation of respiratory syncytial virus fusion protein. Cleavage at two furin consensus sequences. J Biol Chem 276: 31642–31650 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000418
Loading
/content/journal/jgv/10.1099/jgv.0.000418
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error