1887

Abstract

The amino-terminal cytoplasmic domains of paramyxovirus attachment glycoproteins include trafficking signals that influence protein processing and cell surface expression. To characterize the role of the cytoplasmic domain in protein expression, fusion support and particle assembly in more detail, we constructed chimeric Nipah virus (NiV) glycoprotein (G) and canine distemper virus (CDV) haemagglutinin (H) proteins carrying the respective heterologous cytoplasmic domain, as well as a series of mutants with progressive deletions in this domain. CDV H retained fusion function and was normally expressed on the cell surface with a heterologous cytoplasmic domain, while the expression and fusion support of NiV G was dramatically decreased when its cytoplasmic domain was replaced with that of CDV H. The cell surface expression and fusion support functions of CDV H were relatively insensitive to cytoplasmic domain deletions, while short deletions in the corresponding region of NiV G dramatically decreased both. In addition, the first 10 residues of the CDV H cytoplasmic domain strongly influence its incorporation into virus-like particles formed by the CDV matrix (M) protein, while the co-expression of NiV M with NiV G had no significant effect on incorporation of G into particles. The cytoplasmic domains of both the CDV H and NiV G proteins thus contribute differently to the virus life cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000415
2016-05-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/5/1066.html?itemId=/content/journal/jgv/10.1099/jgv.0.000415&mimeType=html&fmt=ahah

References

  1. Bonaparte M. I., Dimitrov A. S., Bossart K. N., Crameri G., Mungall B. A., Bishop K. A., Choudhry V., Dimitrov D. S., Wang L.-F., other authors. 2005; Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci U S A102:10652–10657 [CrossRef][PubMed]
    [Google Scholar]
  2. Bose S., Welch B. D., Kors C. A., Yuan P., Jardetzky T. S., Lamb R. A.. 2011; Structure and mutagenesis of the parainfluenza virus 5 hemagglutinin-neuraminidase stalk domain reveals a four-helix bundle and the role of the stalk in fusion promotion. J Virol85:12855–12866 [CrossRef][PubMed]
    [Google Scholar]
  3. Bose S., Zokarkar A., Welch B. D., Leser G. P., Jardetzky T. S., Lamb R. A.. 2012; Fusion activation by a headless parainfluenza virus 5 hemagglutinin-neuraminidase stalk suggests a modular mechanism for triggering. Proc Natl Acad Sci U S A109:E2625–E2634 [CrossRef][PubMed]
    [Google Scholar]
  4. Bose S., Song A. S., Jardetzky T. S., Lamb R. A.. 2014; Fusion activation through attachment protein stalk domains indicates a conserved core mechanism of paramyxovirus entry into cells. J Virol88:3925–3941 [CrossRef][PubMed]
    [Google Scholar]
  5. Bossart K. N., Wang L.-F., Flora M. N., Chua K. B., Lam S. K., Eaton B. T., Broder C. C.. 2002; Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol76:11186–11198 [CrossRef][PubMed]
    [Google Scholar]
  6. Bowden T. A., Crispin M., Harvey D. J., Jones E. Y., Stuart D. I.. 2010; Dimeric architecture of the Hendra virus attachment glycoprotein: evidence for a conserved mode of assembly. J Virol84:6208–6217 [CrossRef][PubMed]
    [Google Scholar]
  7. Brindley M. A., Suter R., Schestak I., Kiss G., Wright E. R., Plemper R. K.. 2013; A stabilized headless measles virus attachment protein stalk efficiently triggers membrane fusion. J Virol87:11693–11703 [CrossRef][PubMed]
    [Google Scholar]
  8. Cathomen T., Mrkic B., Spehner D., Drillien R., Naef R., Pavlovic J., Aguzzi A., Billeter M. A., Cattaneo R.. 1998a; A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J17:3899–3908 [CrossRef][PubMed]
    [Google Scholar]
  9. Cathomen T., Naim H. Y., Cattaneo R.. 1998b; Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol72:1224–1234[PubMed]
    [Google Scholar]
  10. Chang A., Dutch R. E.. 2012; Paramyxovirus fusion and entry: multiple paths to a common end. Viruses4:613–636 [CrossRef][PubMed]
    [Google Scholar]
  11. Ciancanelli M. J., Basler C. F.. 2006; Mutation of YMYL in the Nipah virus matrix protein abrogates budding and alters subcellular localization. J Virol80:12070–12078 [CrossRef][PubMed]
    [Google Scholar]
  12. Colf L. A., Juo Z. S., Garcia K. C.. 2007; Structure of the measles virus hemagglutinin. Nat Struct Mol Biol14:1227–1228 [CrossRef][PubMed]
    [Google Scholar]
  13. Crennell S., Takimoto T., Portner A., Taylor G.. 2000; Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nat Struct Biol7:1068–1074 [CrossRef][PubMed]
    [Google Scholar]
  14. Diederich S., Thiel L., Maisner A.. 2008; Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. Virology375:391–400 [CrossRef][PubMed]
    [Google Scholar]
  15. Dietzel E., Anderson D. E., Castan A., von Messling V., Maisner A.. 2011; Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence. J Virol85:7162–7168 [CrossRef][PubMed]
    [Google Scholar]
  16. Dietzel E., Kolesnikova L., Sawatsky B., Heiner A., Weis M., Kobinger G. P., Becker S., von Messling V., Maisner A.. 2016; Nipah virus matrix protein influences fusogenicity and is essential for particle infectivity and stability. J Virol90:2514–2522[PubMed][CrossRef]
    [Google Scholar]
  17. Hasegawa K., Hu C., Nakamura T., Marks J. D., Russell S. J., Peng K.-W.. 2007; Affinity thresholds for membrane fusion triggering by viral glycoproteins. J Virol81:13149–13157 [CrossRef][PubMed]
    [Google Scholar]
  18. Hashiguchi T., Kajikawa M., Maita N., Takeda M., Kuroki K., Sasaki K., Kohda D., Yanagi Y., Maenaka K.. 2007; Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc Natl Acad Sci U S A104:19535–19540 [CrossRef][PubMed]
    [Google Scholar]
  19. Lamp B., Dietzel E., Kolesnikova L., Sauerhering L., Erbar S., Weingartl H., Maisner A.. 2013; Nipah virus entry and egress from polarized epithelial cells. J Virol87:3143–3154 [CrossRef][PubMed]
    [Google Scholar]
  20. Landowski M., Dabundo J., Liu Q., Nicola A. V., Aguilar H. C.. 2014; Nipah virion entry kinetics, composition, and conformational changes determined by enzymatic virus-like particles and new flow virometry tools. J Virol88:14197–14206 [CrossRef][PubMed]
    [Google Scholar]
  21. Lawrence M. C., Borg N. A., Streltsov V. A., Pilling P. A., Epa V. C., Varghese J. N., McKimm-Breschkin J. L., Colman P. M.. 2004; Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. J Mol Biol335:1343–1357 [CrossRef][PubMed]
    [Google Scholar]
  22. Li M., Schmitt P. T., Li Z., McCrory T. S., He B., Schmitt A. P.. 2009; Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. J Virol83:7261–7272 [CrossRef][PubMed]
    [Google Scholar]
  23. Liu Q., Stone J. A., Bradel-Tretheway B., Dabundo J., Benavides Montano J. A., Santos-Montanez J., Biering S. B., Nicola A. V., Iorio R. M., other authors. 2013; Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry. PLoS Pathog9:e1003770 [CrossRef][PubMed]
    [Google Scholar]
  24. Liu Q., Bradel-Tretheway B., Monreal A. I., Saludes J. P., Lu X., Nicola A. V., Aguilar H. C.. 2015; Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. J Virol89:1838–1850 [CrossRef][PubMed]
    [Google Scholar]
  25. Moll M., Klenk H.-D., Herrler G., Maisner A.. 2001; A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H and F alters targeting, endocytosis, and cell fusion in polarized Madin-Darby canine kidney cells. J Biol Chem276:17887–17894 [CrossRef][PubMed]
    [Google Scholar]
  26. Moll M., Klenk H.-D., Maisner A.. 2002; Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenic activity and the generation of recombinant measles viruses. J Virol76:7174–7186 [CrossRef][PubMed]
    [Google Scholar]
  27. Mühlebach M. D., Mateo M., Sinn P. L., Prüfer S., Uhlig K. M., Leonard V. H. J., Navaratnarajah C. K., Frenzke M., Wong X. X., other authors. 2011; Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature480:530–533[PubMed]
    [Google Scholar]
  28. Naim H. Y., Ehler E., Billeter M. A.. 2000; Measles virus matrix protein specifies apical virus release and glycoprotein sorting in epithelial cells. EMBO J19:3576–3585 [CrossRef][PubMed]
    [Google Scholar]
  29. Navaratnarajah C. K., Oezguen N., Rupp L., Kay L., Leonard V. H. J., Braun W., Cattaneo R.. 2011; The heads of the measles virus attachment protein move to transmit the fusion-triggering signal. Nat Struct Mol Biol18:128–134 [CrossRef][PubMed]
    [Google Scholar]
  30. Navaratnarajah C. K., Negi S., Braun W., Cattaneo R.. 2012; Membrane fusion triggering: three modules with different structure and function in the upper half of the measles virus attachment protein stalk. J Biol Chem287:38543–38551 [CrossRef][PubMed]
    [Google Scholar]
  31. Negrete O. A., Levroney E. L., Aguilar H. C., Bertolotti-Ciarlet A., Nazarian R., Tajyar S., Lee B.. 2005; EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature436:401–405[PubMed]
    [Google Scholar]
  32. Negrete O. A., Wolf M. C., Aguilar H. C., Enterlein S., Wang W., Mühlberger E., Su S. V., Bertolotti-Ciarlet A., Flick R., Lee B.. 2006; Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog2:e7 [CrossRef][PubMed]
    [Google Scholar]
  33. Noyce R. S., Bondre D. G., Ha M. N., Lin L.-T., Sisson G., Tsao M.-S., Richardson C. D.. 2011; Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog7:e1002240 [CrossRef][PubMed]
    [Google Scholar]
  34. Palomares K., Vigant F., Van Handel B., Pernet O., Chikere K., Hong P., Sherman S. P., Patterson M., An D. S., other authors. 2013; Nipah virus envelope-pseudotyped lentiviruses efficiently target ephrinB2-positive stem cell populations in vitro and bypass the liver sink when administered in vivo . J Virol87:2094–2108 [CrossRef][PubMed]
    [Google Scholar]
  35. Parks G. D., Lamb R. A.. 1990; Defective assembly and intracellular transport of mutant paramyxovirus hemagglutinin-neuraminidase proteins containing altered cytoplasmic domains. J Virol64:3605–3616[PubMed]
    [Google Scholar]
  36. Patch J. R., Crameri G., Wang L.-F., Eaton B. T., Broder C. C.. 2007; Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein. Virol J4:1 [CrossRef][PubMed]
    [Google Scholar]
  37. Plemper R. K., Hammond A. L., Cattaneo R.. 2001; Measles virus envelope glycoproteins hetero-oligomerize in the endoplasmic reticulum. J Biol Chem276:44239–44246 [CrossRef][PubMed]
    [Google Scholar]
  38. Pohl C., Duprex W. P., Krohne G., Rima B. K., Schneider-Schaulies S.. 2007; Measles virus M and F proteins associate with detergent-resistant membrane fractions and promote formation of virus-like particles. J Gen Virol88:1243–1250 [CrossRef][PubMed]
    [Google Scholar]
  39. Porotto M., Doctor L., Carta P., Fornabaio M., Greengard O., Kellogg G. E., Moscona A.. 2006; Inhibition of Hendra virus fusion. J Virol80:9837–9849 [CrossRef][PubMed]
    [Google Scholar]
  40. Runkler N., Dietzel E., Carsillo M., Niewiesk S., Maisner A.. 2009; Sorting signals in the measles virus wild-type glycoproteins differently influence virus spread in polarized epithelia and lymphocytes. J Gen Virol90:2474–2482 [CrossRef][PubMed]
    [Google Scholar]
  41. Salditt A., Koethe S., Pohl C., Harms H., Kolesnikova L., Becker S., Schneider-Schaulies S.. 2010; Measles virus M protein-driven particle production does not involve the endosomal sorting complex required for transport (ESCRT) system. J Gen Virol91:1464–1472 [CrossRef][PubMed]
    [Google Scholar]
  42. Sawatsky B., von Messling V.. 2010; Canine distemper viruses expressing a hemagglutinin without N-glycans lose virulence but retain immunosuppression. J Virol84:2753–2761 [CrossRef][PubMed]
    [Google Scholar]
  43. Sawatsky B., Grolla A., Kuzenko N., Weingartl H., Czub M.. 2007; Inhibition of Henipavirus infection by Nipah virus attachment glycoprotein occurs without cell-surface downregulation of ephrin-B2 or ephrin-B3. J Gen Virol88:582–591 [CrossRef][PubMed]
    [Google Scholar]
  44. Sawatsky B., Wong X.-X., Hinkelmann S., Cattaneo R., von Messling V.. 2012; Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression. J Virol86:3658–3666 [CrossRef][PubMed]
    [Google Scholar]
  45. Schmitt A. P., He B., Lamb R. A.. 1999; Involvement of the cytoplasmic domain of the hemagglutinin-neuraminidase protein in assembly of the paramyxovirus simian virus 5. J Virol73:8703–8712[PubMed]
    [Google Scholar]
  46. Schmitt A. P., Leser G. P., Waning D. L., Lamb R. A.. 2002; Requirements for budding of paramyxovirus simian virus 5 virus-like particles. J Virol76:3952–3964 [CrossRef][PubMed]
    [Google Scholar]
  47. Spriggs M. K., Collins P. L.. 1990; Intracellular processing and transport of NH2-terminally truncated forms of a hemagglutinin-neuraminidase type II glycoprotein. J Cell Biol111:31–44 [CrossRef][PubMed]
    [Google Scholar]
  48. Tahara M., Takeda M., Yanagi Y.. 2007; Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion. J Virol81:6827–6836 [CrossRef][PubMed]
    [Google Scholar]
  49. Takimoto T., Bousse T., Coronel E. C., Scroggs R. A., Portner A.. 1998; Cytoplasmic domain of Sendai virus HN protein contains a specific sequence required for its incorporation into virions. J Virol72:9747–9754[PubMed]
    [Google Scholar]
  50. Tatsuo H., Ono N., Tanaka K., Yanagi Y.. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature406:893–897 [CrossRef][PubMed]
    [Google Scholar]
  51. Villar E., Barroso I. M.. 2006; Role of sialic acid-containing molecules in paramyxovirus entry into the host cell: a minireview. Glycoconj J23:5–17 [CrossRef][PubMed]
    [Google Scholar]
  52. von Messling V., Springfeld C., Devaux P., Cattaneo R.. 2003; A ferret model of canine distemper virus virulence and immunosuppression. J Virol77:12579–12591 [CrossRef][PubMed]
    [Google Scholar]
  53. von Messling V., Milosevic D., Cattaneo R.. 2004; Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc Natl Acad Sci U S A101:14216–14221 [CrossRef][PubMed]
    [Google Scholar]
  54. von Messling V., Oezguen N., Zheng Q., Vongpunsawad S., Braun W., Cattaneo R.. 2005; Nearby clusters of hemagglutinin residues sustain SLAM-dependent canine distemper virus entry in peripheral blood mononuclear cells. J Virol79:5857–5862 [CrossRef][PubMed]
    [Google Scholar]
  55. Waning D. L., Schmitt A. P., Leser G. P., Lamb R. A.. 2002; Roles for the cytoplasmic tails of the fusion and hemagglutinin-neuraminidase proteins in budding of the paramyxovirus simian virus 5. J Virol76:9284–9297 [CrossRef][PubMed]
    [Google Scholar]
  56. Weise C., Erbar S., Lamp B., Vogt C., Diederich S., Maisner A.. 2010; Tyrosine residues in the cytoplasmic domains affect sorting and fusion activity of the Nipah virus glycoproteins in polarized epithelial cells. J Virol84:7634–7641 [CrossRef][PubMed]
    [Google Scholar]
  57. Whitman S. D., Dutch R. E.. 2007; Surface density of the Hendra G protein modulates Hendra F protein-promoted membrane fusion: role for Hendra G protein trafficking and degradation. Virology363:419–429 [CrossRef][PubMed]
    [Google Scholar]
  58. Whitman S. D., Smith E. C., Dutch R. E.. 2009; Differential rates of protein folding and cellular trafficking for the Hendra virus F and G proteins: implications for F-G complex formation. J Virol83:8998–9001 [CrossRef][PubMed]
    [Google Scholar]
  59. Wilson C., Gilmore R., Morrison T.. 1990; Aberrant membrane insertion of a cytoplasmic tail deletion mutant of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. Mol Cell Biol10:449–457 [CrossRef][PubMed]
    [Google Scholar]
  60. Xu K., Rajashankar K. R., Chan Y. P., Himanen J. P., Broder C. C., Nikolov D. B.. 2008; Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci U S A105:9953–9958 [CrossRef][PubMed]
    [Google Scholar]
  61. Yuan P., Thompson T. B., Wurzburg B. A., Paterson R. G., Lamb R. A., Jardetzky T. S.. 2005; Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure13:803–815 [CrossRef][PubMed]
    [Google Scholar]
  62. Yuan P., Swanson K. A., Leser G. P., Paterson R. G., Lamb R. A., Jardetzky T. S.. 2011; Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk. Proc Natl Acad Sci U S A108:14920–14925 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000415
Loading
/content/journal/jgv/10.1099/jgv.0.000415
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error