1887

Abstract

salivary gland hypertrophy virus (GpSGHV; family ) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions ( = 17) and deletions ( = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different colonies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000409
2016-04-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/4/1010.html?itemId=/content/journal/jgv/10.1099/jgv.0.000409&mimeType=html&fmt=ahah

References

  1. Abd-Alla A. , Bossin H. , Cousserans F. , Parker A. , Bergoin M. , Robinson A. . ( 2007;). Development of a non-destructive PCR method for detection of the salivary gland hypertrophy virus (SGHV) in tsetse flies. J Virol Methods 139: 143–149 [CrossRef] [PubMed].
    [Google Scholar]
  2. Abd-Alla A. M. M. , Cousserans F. , Parker A. G. , Jehle J. A. , Parker N. J. , Vlak J. M. , Robinson A. S. , Bergoin M. . ( 2008;). Genome analysis of a Glossina pallidipes salivary gland hypertrophy virus reveals a novel, large, double-stranded circular DNA virus. J Virol 82: 4595–4611 [CrossRef] [PubMed].
    [Google Scholar]
  3. Abd-Alla A. M. M. , Kariithi H. M. , Parker A. G. , Robinson A. S. , Kiflom M. , Bergoin M. , Vreysen M. J. B. . ( 2010;). Dynamics of the salivary gland hypertrophy virus in laboratory colonies of Glossina pallidipes (Diptera: Glossinidae). Virus Res 150: 103–110 [CrossRef] [PubMed].
    [Google Scholar]
  4. Abd-Alla A. M. M. , Parker A. G. , Vreysen M. J. B. , Bergoin M. . ( 2011;). Tsetse salivary gland hypertrophy virus: hope or hindrance for tsetse control?. PLoS Negl Trop Dis 5: e1220 [CrossRef] [PubMed].
    [Google Scholar]
  5. Abd-Alla A. M. M. , Kariithi H. M. , Mohamed A. H. , Lapiz E. , Parker A. G. , Vreysen M. J. B. . ( 2013;). Managing hytrosavirus infections in Glossina pallidipes colonies: feeding regime affects the prevalence of salivary gland hypertrophy syndrome. PLoS One 8: e61875 [CrossRef] [PubMed].
    [Google Scholar]
  6. Abd-Alla A. M. M. , Marin C. , Parker A. G. , Vreysen M. J. B. . ( 2014;). Antiviral drug valacyclovir treatment combined with a clean feeding system enhances the suppression of salivary gland hypertrophy in laboratory colonies of Glossina pallidipes . Parasit Vectors 7: 214 [CrossRef] [PubMed].
    [Google Scholar]
  7. Armengaud J. . ( 2009;). A perfect genome annotation is within reach with the proteomics and genomics alliance. Curr Opin Microbiol 12: 292–300 [CrossRef] [PubMed].
    [Google Scholar]
  8. Aronesty E. . ( 2013;). Comparison of sequencing utility programs. Open Bioinform J 7: 1–8 [CrossRef].
    [Google Scholar]
  9. Asser-Kaiser S. , Heckel D. G. , Jehle J. A. . ( 2010;). Sex linkage of CpGV resistance in a heterogeneous field strain of the codling moth Cydia pomonella (L.). J Invertebr Pathol 103: 59–64 [CrossRef] [PubMed].
    [Google Scholar]
  10. Asser-Kaiser S. , Radtke P. , El-Salamouny S. , Winstanley D. , Jehle J. A. . ( 2011;). Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication. Virology 410: 360–367 [CrossRef] [PubMed].
    [Google Scholar]
  11. Barrera G. , Williams T. , Villamizar L. , Caballero P. , Simón O. . ( 2013;). Deletion genotypes reduce occlusion body potency but increase occlusion body production in a Colombian Spodoptera frugiperda nucleopolyhedrovirus population. PLoS One 8: e77271 [CrossRef] [PubMed].
    [Google Scholar]
  12. Barrett M. P. , Vincent I. M. , Burchmore R. J. , Kazibwe A. J. , Matovu E. . ( 2011;). Drug resistance in human African trypanosomiasis. Future Microbiol 6: 1037–1047 [CrossRef] [PubMed].
    [Google Scholar]
  13. Bernal A. , Williams T. , Muñoz D. , Caballero P. , Simón O. . ( 2013;). Complete genome sequences of five Chrysodeixis chalcites nucleopolyhedrovirus genotypes from a Canary Islands isolate. Genome Announc 1: e00873–e00813 [CrossRef] [PubMed].
    [Google Scholar]
  14. Bolger A. M. , Lohse M. , Usadel B. . ( 2014;). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120 [CrossRef] [PubMed].
    [Google Scholar]
  15. Boucias D. G. , Kariithi H. M. , Bourtzis K. , Schneider D. I. , Kelley K. , Miller W. J. , Parker A. G. , Abd-Alla A. M. M. . ( 2013;). Transgenerational transmission of the Glossina pallidipes hytrosavirus depends on the presence of a functional symbiome. PLoS One 8: e61150 [CrossRef] [PubMed].
    [Google Scholar]
  16. Carver T. J. , Rutherford K. M. , Berriman M. , Rajandream M. A. , Barrell B. G. , Parkhill J. . ( 2005;). act: the Artemis comparison tool. Bioinformatics 21: 3422–3423 [CrossRef] [PubMed].
    [Google Scholar]
  17. Chen Y. R. , Zhong S. , Fei Z. , Hashimoto Y. , Xiang J. Z. , Zhang S. , Blissard G. W. . ( 2013;). The transcriptome of the baculovirus Autographa californica multiple nucleopolyhedrovirus in Trichoplusia ni cells. J Virol 87: 6391–6405 [CrossRef] [PubMed].
    [Google Scholar]
  18. Clavijo G. , Williams T. , Muñoz D. , Caballero P. , López-Ferber M. . ( 2010;). Mixed genotype transmission bodies and virions contribute to the maintenance of diversity in an insect virus. Proc Biol Sci 277: 943–951 [CrossRef] [PubMed].
    [Google Scholar]
  19. Cochran M. A. , Faulkner P. . ( 1983;). Location of homologous DNA sequences interspersed at five regions in the baculovirus AcMNPV genome. J Virol 45: 961–970 [PubMed].
    [Google Scholar]
  20. Conesa A. , Götz S. , García-Gómez J. M. , Terol J. , Talón M. , Robles M. . ( 2005;). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676 [CrossRef] [PubMed].
    [Google Scholar]
  21. Corcelette S. , Massé T. , Madjar J. J. . ( 2000;). Initiation of translation by non-AUG codons in human T-cell lymphotropic virus type I mRNA encoding both Rex and Tax regulatory proteins. Nucleic Acids Res 28: 1625–1634 [CrossRef] [PubMed].
    [Google Scholar]
  22. Cox J. , Mann M. . ( 2008;). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367–1372 [CrossRef] [PubMed].
    [Google Scholar]
  23. Cox J. , Neuhauser N. , Michalski A. , Scheltema R. A. , Olsen J. V. , Mann M. . ( 2011;). Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10: 1794–1805 [CrossRef] [PubMed].
    [Google Scholar]
  24. Cui L. , Cheng X. , Li L. , Li J. . ( 2007;). Identification of Trichoplusia ni ascovirus 2c virion structural proteins. J Gen Virol 88: 2194–2197 [CrossRef] [PubMed].
    [Google Scholar]
  25. den Dunnen J. T. , Antonarakis S. E. . ( 2001;). Nomenclature for the description of human sequence variations. Hum Genet 109: 121–124 [CrossRef] [PubMed].
    [Google Scholar]
  26. Doi H. . ( 1991;). Importance of purine and pyrimidine content of local nucleotide sequences (six bases long) for evolution of the human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 88: 9282–9286 [CrossRef] [PubMed].
    [Google Scholar]
  27. Dresang L. R. , Teuton J. R. , Feng H. , Jacobs J. M. , Camp D. G. II , Purvine S. O. , Gritsenko M. A. , Li Z. , Smith R. D. , other authors . ( 2011;). Coupled transcriptome and proteome analysis of human lymphotropic tumor viruses: insights on the detection and discovery of viral genes. BMC Genomics 12: 625 [CrossRef] [PubMed].
    [Google Scholar]
  28. Feldmann U. , Dyck V. A. , Mattioli R. C. , Jannin J. . ( 2005;). Potential impact of tsetse fly control involving the sterile insect technique. . In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management, pp. 701–723. Edited by Dyck V. A. , Hendrichs J. , Robinson A. S. . Dordrecht: Springer;.
    [Google Scholar]
  29. Finn R. D. , Tate J. , Mistry J. , Coggill P. C. , Sammut S. J. , Hotz H. R. , Ceric G. , Forslund K. , Eddy S. R. , other authors . ( 2008;). The Pfam protein families database. Nucleic Acids Res 36: (Database), D281–D288 [CrossRef] [PubMed].
    [Google Scholar]
  30. Garcia-Maruniak A. , Abd-Alla A. M. M. , Salem T. Z. , Parker A. G. , Lietze V. U. , van Oers M. M. , Maruniak J. E. , Kim W. , Burand J. P. , other authors . ( 2009;). Two viruses that cause salivary gland hypertrophy in Glossina pallidipes and Musca domestica are related and form a distinct phylogenetic clade. J Gen Virol 90: 334–346 [CrossRef] [PubMed].
    [Google Scholar]
  31. Gupta K. C. , Ono E. , Ariztia E. V. , Inaba M. . ( 1994;). Translation initiation from non-AUG codons in COS1 cells is mRNA species dependent. Biochem Biophys Res Commun 201: 567–573 [CrossRef] [PubMed].
    [Google Scholar]
  32. Heler R. , Samai P. , Modell J. W. , Weiner C. , Goldberg G. W. , Bikard D. , Marraffini L. A. . ( 2015;). Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519: 199–202 [CrossRef] [PubMed].
    [Google Scholar]
  33. Jaenson T. G. T. . ( 1978a;). Mating behaviour of Glossina pallidipes Austen (Diptera, Glossinidae): genetic differences in copulation time between allopatric populations. Entomol Exp Appl 24: 100–108 [CrossRef].
    [Google Scholar]
  34. Jaenson T. G. T. . ( 1978b;). Reproductive biology of the tsetse Glossina pallidipes Austen (Diptera, Glossinidae) with special reference to mating behaviour PhD thesis, Uppsala University, Uppsala, Sweden..
    [Google Scholar]
  35. Jehle J. A. , Abd-Alla A. M. , Wang Y. . ( 2013;). Phylogeny and evolution of Hytrosaviridae . J Invertebr Pathol 112: (Suppl), S62–S67 [CrossRef] [PubMed].
    [Google Scholar]
  36. Joannin N. , Abhiman S. , Sonnhammer E. L. , Wahlgren M. . ( 2008;). Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family. BMC Genomics 9: 19 [CrossRef] [PubMed].
    [Google Scholar]
  37. Jordan A. M. . ( 1986;). Trypanosomiasis Control and African Rural Development London: Longman Higher Education;.
    [Google Scholar]
  38. Kariithi H. M. , Ince I. A. , Boeren S. , Vervoort J. , Bergoin M. , van Oers M. M. , Abd-Alla A. M. M. , Vlak J. M. . ( 2010;). Proteomic analysis of Glossina pallidipes salivary gland hypertrophy virus virions for immune intervention in tsetse fly colonies. J Gen Virol 91: 3065–3074 [CrossRef] [PubMed].
    [Google Scholar]
  39. Kariithi H. M. , Ince I. A. , Boeren S. , Abd-Alla A. M. M. , Parker A. G. , Aksoy S. , Vlak J. M. , van Oers M. M. . ( 2011;). The salivary secretome of the tsetse fly Glossina pallidipes (Diptera: Glossinidae) infected by salivary gland hypertrophy virus. PLoS Negl Trop Dis 5: e1371 [CrossRef] [PubMed].
    [Google Scholar]
  40. Kariithi H. M. , Ahmadi M. , Parker A. G. , Franz G. , Ros V. I. D. , Haq I. , Elashry A. M. , Vlak J. M. , Bergoin M. , other authors . ( 2013a;). Prevalence and genetic variation of salivary gland hypertrophy virus in wild populations of the tsetse fly Glossina pallidipes from southern and eastern Africa. J Invertebr Pathol 112: (Suppl), S123–S132 [CrossRef] [PubMed].
    [Google Scholar]
  41. Kariithi H. M. , van Lent J. W. , Boeren S. , Abd-Alla A. M. , Ìnce I. A. , van Oers M. M. , Vlak J. M. . ( 2013b;). Correlation between structure, protein composition, morphogenesis and cytopathology of Glossina pallidipes salivary gland hypertrophy virus. J Gen Virol 94: 193–208 [CrossRef] [PubMed].
    [Google Scholar]
  42. Kariithi H. M. , van Oers M. M. , Vlak J. M. , Vreysen M. J. , Parker A. G. , Abd-Alla A. M. . ( 2013c;). Virology, epidemiology and pathology of Glossina hytrosavirus, and its control prospects in laboratory colonies of the tsetse fly, Glossina pallidipes (Diptera; Glossinidae). Insects 4: 287–319 [CrossRef] [PubMed].
    [Google Scholar]
  43. Kariithi H. M. , Ince A. I. , Boeren S. , Murungi E. K. , Meki I. K. , Otieno E. A. , Nyanjom S. R. G. , van Oers M. M. , Vlak J. M. , other authors . ( 2016;). Comparative analysis of salivary gland proteomes of two Glossina species that exhibit differential hytrosavirus pathologies. Front Microbiol 7: 89.[CrossRef]
    [Google Scholar]
  44. Korber B. T. M. . ( 2000;). HIV signature and sequence variation analysis. . In Computational Analysis of HIV Molecular Sequences, pp. 55–72. Edited by Rodrigo A. G. , Learn G. H. . Dordrecht: Kluwer Academic;.
    [Google Scholar]
  45. Kreitman M. , Akashi H. . ( 1995;). Molecular evidence for natural selection. Annu Rev Ecol Syst 26: 403–422 [CrossRef].
    [Google Scholar]
  46. Langmead B. , Trapnell C. , Pop M. , Salzberg S. L. . ( 2009;). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25 [CrossRef] [PubMed].
    [Google Scholar]
  47. López-Ferber M. , Simón O. , Williams T. , Caballero P. . ( 2003;). Defective or effective? Mutualistic interactions between virus genotypes. Proc Biol Sci 270: 2249–2255 [CrossRef] [PubMed].
    [Google Scholar]
  48. Magoc T. , Wood D. , Salzberg S. L. . ( 2013;). EDGE-pro: estimated degree of gene expression in prokaryotic genomes. Evol Bioinform Online 9: 127–136 [CrossRef] [PubMed].
    [Google Scholar]
  49. Marchler-Bauer A. , Derbyshire M. K. , Gonzales N. R. , Lu S. , Chitsaz F. , Geer L. Y. , Geer R. C. , He J. , Gwadz M. , other authors . ( 2015;). CDD: NCBI's conserved domain database. Nucleic Acids Res 43: (D1), D222–D226 [CrossRef] [PubMed].
    [Google Scholar]
  50. Margulies M. , Egholm M. , Altman W. E. , Attiya S. , Bader J. S. , Bemben L. A. , Berka J. , Braverman M. S. , Chen Y. J. , other authors . ( 2005;). Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380 [PubMed].
    [Google Scholar]
  51. McCarthy C. B. , Theilmann D. A. . ( 2008;). AcMNPV ac143 (odv-e18) is essential for mediating budded virus production and is the 30th baculovirus core gene. Virology 375: 277–291 [CrossRef] [PubMed].
    [Google Scholar]
  52. Miele S. A. , Garavaglia M. J. , Belaich M. N. , Ghiringhelli P. D. . ( 2011;). Baculovirus: molecular insights on their diversity and conservation. Int J Evol Biol 2011: 379424 [CrossRef] [PubMed].
    [Google Scholar]
  53. Mitchell A. , Chang H. Y. , Daugherty L. , Fraser M. , Hunter S. , López R. , McAnulla C. , McMenamin C. , Nuka G. , other authors . ( 2015;). InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43: (D1), D213–D221 [CrossRef] [PubMed].
    [Google Scholar]
  54. Nei M. , Gojobori T. . ( 1986;). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426 [PubMed].
    [Google Scholar]
  55. Nesvizhskii A. I. . ( 2014;). Proteogenomics: concepts, applications and computational strategies. Nat Methods 11: 1114–1125 [CrossRef] [PubMed].
    [Google Scholar]
  56. Niang M. , Yan Yam X. , Preiser P. R. . ( 2009;). The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog 5: e1000307 [CrossRef] [PubMed].
    [Google Scholar]
  57. Nielsen R. , Yang Z. . ( 1998;). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148: 929–936 [PubMed].
    [Google Scholar]
  58. Parker N. J. , Parker A. G. . ( 2008;). Simple tools for assembling and searching high-density picolitre pyrophosphate sequence data. Source Code Biol Med 3: 5 [CrossRef] [PubMed].
    [Google Scholar]
  59. Rohrmann G. F. . ( 2013;). The AcMNPV genome: gene content, conservation, and function. . In Baculovirus Molecular Biology , 3rd edn., pp. 153–193 Bethesda, MD: National Center for Biotechnology Information;.
    [Google Scholar]
  60. Sanders W. S. , Wang N. , Bridges S. M. , Malone B. M. , Dandass Y. S. , McCarthy F. M. , Nanduri B. , Lawrence M. L. , Burgess S. C. . ( 2011;). The proteogenomic mapping tool. BMC Bioinformatics 12: 115 [CrossRef] [PubMed].
    [Google Scholar]
  61. Schnitzler P. , Delius H. , Scholz J. , Touray M. , Orth E. , Darai G. . ( 1987;). Identification and nucleotide sequence analysis of the repetitive DNA element in the genome of fish lymphocystis disease virus. Virology 161: 570–578 [CrossRef] [PubMed].
    [Google Scholar]
  62. Schofield C. J. , Kabayo J. P. . ( 2008;). Trypanosomiasis vector control in Africa and Latin America. Parasit Vectors 1: 24 [CrossRef] [PubMed].
    [Google Scholar]
  63. Simón O. , Williams T. , López-Ferber M. , Caballero P. . ( 2004;). Genetic structure of a Spodoptera frugiperda nucleopolyhedrovirus population: high prevalence of deletion genotypes. Appl Environ Microbiol 70: 5579–5588 [CrossRef] [PubMed].
    [Google Scholar]
  64. Simón O. , Williams T. , López-Ferber M. , Caballero P. . ( 2005;). Functional importance of deletion mutant genotypes in an insect nucleopolyhedrovirus population. Appl Environ Microbiol 71: 4254–4262 [CrossRef] [PubMed].
    [Google Scholar]
  65. Slack J. , Arif B. M. . ( 2007;). The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res 69: 99–165 [CrossRef] [PubMed].
    [Google Scholar]
  66. Sokal R. R. , Rohlf F. J. . ( 2012;). Biometry: The Principles and Practice of Statistics in Biological Research New York, NY: Freeman;.
    [Google Scholar]
  67. Steelman C. D. . ( 1976;). Effects of external and internal arthropod parasites on domestic livestock production. Annu Rev Entomol 21: 155–178 [CrossRef] [PubMed].
    [Google Scholar]
  68. Syed Musthaq S. , Sudhakaran R. , Ishaq Ahmed V. P. , Balasubramanian G. , Sahul Hameed A. S. . ( 2006;). Variability in the tandem repetitive DNA sequences of white spot syndrome virus (WSSV) genome and suitability of VP28 gene to detect different isolates of WSSV from India. Aquaculture 256: 34–41 [CrossRef].
    [Google Scholar]
  69. van der Ende A. , Pan Z. J. , Bart A. , van der Hulst R. W. M. , Feller M. , Xiao S. D. , Tytgat G. N. J. , Dankert J. . ( 1998;). cagA-positive Helicobacter pylori populations in China and The Netherlands are distinct. Infect Immun 66: 1822–1826 [PubMed].
    [Google Scholar]
  70. Virto C. , Navarro D. , Tellez M. M. , Herrero S. , Williams T. , Murillo R. , Caballero P. . ( 2014;). Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. J Invertebr Pathol 122: 22–27 [CrossRef] [PubMed].
    [Google Scholar]
  71. Vreysen M. J. B. , Seck M. T. , Sall B. , Bouyer J. . ( 2013;). Tsetse flies: their biology and control using area-wide integrated pest management approaches. J Invertebr Pathol 112: (Suppl), S15–S25 [CrossRef] [PubMed].
    [Google Scholar]
  72. Wang Y. , Kleespies R. G. , Huger A. M. , Jehle J. A. . ( 2007;). The genome of Gryllus bimaculatus nudivirus indicates an ancient diversification of baculovirus-related nonoccluded nudiviruses of insects. J Virol 81: 5395–5406 [CrossRef] [PubMed].
    [Google Scholar]
  73. Wang Y. , Bininda-Emonds O. R. , van Oers M. M. , Vlak J. M. , Jehle J. A. . ( 2011;). The genome of Oryctes rhinoceros nudivirus provides novel insight into the evolution of nuclear arthropod-specific large circular double-stranded DNA viruses. Virus Genes 42: 444–456 [CrossRef] [PubMed].
    [Google Scholar]
  74. Whitnall A. B. M. . ( 1934;). The trypanosome infections of Glossina pallidipes in the Umfolosi Game Reserve, Zululand. Onderstepoort J Vet Sci Anim Ind 2: 2–21.
    [Google Scholar]
  75. Wilson A. C. , Carlson S. S. , White T. J. . ( 1977;). Biochemical evolution. Annu Rev Biochem 46: 573–639 [CrossRef] [PubMed].
    [Google Scholar]
  76. Wolf Y. I. , Viboud C. , Holmes E. C. , Koonin E. V. , Lipman D. J. . ( 2006;). Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 1: 34 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000409
Loading
/content/journal/jgv/10.1099/jgv.0.000409
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error