1887

Abstract

The 5′ untranslated region (5′UTR) of foot-and-mouth disease virus (FMDV) contains an internal ribosome entry site (IRES) that facilitates translation initiation of the viral ORF in a 5′ (m7GpppN) cap-independent manner. IRES elements are responsible for the virulence phenotypes of several enteroviruses. Here, we constructed a chimeric virus in which the IRES of FMDV was completely replaced with that of bovine rhinitis B virus (BRBV) in an infectious clone of serotype O FMDV. The resulting IRES-replaced virus, FMDV(BRBV), replicated as efficiently as WT FMDV in hamster-derived BHK-21 cells, but was restricted for growth in porcine-derived IBRS-2, PK-15 and SK-6 cells, which are susceptible to WT FMDV. To identify the genetic determinants of FMDV underlying this altered cell tropism, a series of IRES-chimeric viruses were constructed in which each domain of the FMDV IRES was replaced with its counterpart from the BRBV IRES. The replication kinetics of these chimeric viruses in different cell lines revealed that the growth restriction phenotype in porcine-derived cells was produced after the replacement of domain 3 or 4 in the FMDV IRES. Furthermore, the change in FMDV cell tropism due to IRES replacement in porcine-derived cells was mainly attributed to a decline in cell-specific IRES translation initiation efficiency. These findings demonstrate that IRES domains 3 and 4 of FMDV are novel cell-specific -elements for viral replication and suggest that IRES-mediated translation determines the species specificity of FMDV infection .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000406
2016-04-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/4/901.html?itemId=/content/journal/jgv/10.1099/jgv.0.000406&mimeType=html&fmt=ahah

References

  1. Borman A., Howell M. T., Patton J. G., Jackson R. J.. ( 1993;). The involvement of a spliceosome component in internal initiation of human rhinovirus RNA translation. J Gen Virol 74: 1775–1788 [CrossRef] [PubMed].
    [Google Scholar]
  2. Borman A. M., Le Mercier P., Girard M., Kean K. M.. ( 1997;). Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 25: 925–932 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bradrick S. S., Lieben E. A., Carden B. M., Romero J. R.. ( 2001;). A predicted secondary structural domain within the internal ribosome entry site of echovirus 12 mediates a cell-type-specific block to viral replication. J Virol 75: 6472–6481 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brown E. A., Day S. P., Jansen R. W., Lemon S. M.. ( 1991;). The 5′ nontranslated region of hepatitis A virus RNA: secondary structure and elements required for translation in vitro. J Virol 65: 5828–5838 [PubMed].
    [Google Scholar]
  5. Caliguiri L. A., Tamm I.. ( 1968;). Action of guanidine on the replication of poliovirus RNA. Virology 35: 408–417 [CrossRef] [PubMed].
    [Google Scholar]
  6. del Angel R. M., Papavassiliou A. G., Fernández-Tomás C., Silverstein S. J., Racaniello V. R.. ( 1989;). Cell proteins bind to multiple sites within the 5′ untranslated region of poliovirus RNA. Proc Natl Acad Sci U S A 86: 8299–8303 [CrossRef] [PubMed].
    [Google Scholar]
  7. Domingo E., Mateu M. G., Martínez M. A., Dopazo J., Moya A., Sobrino F.. ( 1990;). Genetic variability and antigenic diversity of foot-and-mouth disease virus. . In Virus Variability, Epidemiology and Control ( Applied Virology ResearchVol. 2), pp. 233–266. Edited by Kurstak E., Marusyk R. G., Murphy F. A., Van Regenmortel M. H. V.. New York:: [CrossRef] Springer;.
    [Google Scholar]
  8. Drew J., Belsham G. J.. ( 1994;). trans complementation by RNA of defective foot-and-mouth disease virus internal ribosome entry site elements. J Virol 68: 697–703 [PubMed].
    [Google Scholar]
  9. Duke G. M., Hoffman M. A., Palmenberg A. C.. ( 1992;). Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J Virol 66: 1602–1609 [PubMed].
    [Google Scholar]
  10. Fernández-Miragall O., Martínez-Salas E.. ( 2003;). Structural organization of a viral IRES depends on the integrity of the GNRA motif. RNA 9: 1333–1344 [CrossRef] [PubMed].
    [Google Scholar]
  11. Fernández-Miragall O., López de Quinto S., Martínez-Salas E.. ( 2009;). Relevance of RNA structure for the activity of picornavirus IRES elements. Virus Res 139: 172–182 [CrossRef] [PubMed].
    [Google Scholar]
  12. Graff J., Kasang C., Normann A., Pfisterer-Hunt M., Feinstone S. M., Flehmig B.. ( 1994;). Mutational events in consecutive passages of hepatitis A virus strain GBM during cell culture adaptation. Virology 204: 60–68 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gromeier M., Alexander L., Wimmer E.. ( 1996;). Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A 93: 2370–2375 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gromeier M., Bossert B., Arita M., Nomoto A., Wimmer E.. ( 1999;). Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 73: 958–964 [PubMed].
    [Google Scholar]
  15. Grubman M. J., Baxt B.. ( 2004;). Foot-and-mouth disease. Clin Microbiol Rev 17: 465–493 [CrossRef] [PubMed].
    [Google Scholar]
  16. Guest S., Pilipenko E., Sharma K., Chumakov K., Roos R. P.. ( 2004;). Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. J Virol 78: 11097–11107 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hellen C. U., Sarnow P.. ( 2001;). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15: 1593–1612 [CrossRef] [PubMed].
    [Google Scholar]
  18. Hinton T. M., Li F., Crabb B. S.. ( 2000;). Internal ribosomal entry site-mediated translation initiation in equine rhinitis A virus: similarities to and differences from that of foot-and-mouth disease virus. J Virol 74: 11708–11716 [CrossRef] [PubMed].
    [Google Scholar]
  19. Holland J. J.. ( 1961;). Receptor affinities as major determinants of enterovirus tissue tropisms in humans. Virology 15: 312–326 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hollister J. R., Vagnozzi A., Knowles N. J., Rieder E.. ( 2008;). Molecular and phylogenetic analyses of bovine rhinovirus type 2 shows it is closely related to foot-and-mouth disease virus. Virology 373: 411–425 [CrossRef] [PubMed].
    [Google Scholar]
  21. Jackson R. J., Hunt S. L., Gibbs C. L., Kaminski A.. ( 1994;). Internal initiation of translation of picornavirus RNAs. Mol Biol Rep 19: 147–159 [CrossRef] [PubMed].
    [Google Scholar]
  22. Jacobson M. F., Baltimore D.. ( 1968;). Morphogenesis of poliovirus. I. Association of the viral RNA with coat protein. J Mol Biol 33: 369–378 [CrossRef] [PubMed].
    [Google Scholar]
  23. Knowles N. J., Davies P. R., Henry T., O'Donnell V., Pacheco J. M., Mason P. W.. ( 2001;). Emergence in Asia of foot-and-mouth disease viruses with altered host range: characterization of alterations in the 3A protein. J Virol 75: 1551–1556 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kok C. C., Phuektes P., Bek E., McMinn P. C.. ( 2012;). Modification of the untranslated regions of human enterovirus 71 impairs growth in a cell-specific manner. J Virol 86: 542–552 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lama J., Sanz M. A., Carrasco L.. ( 1998;). Genetic analysis of poliovirus protein 3A: characterization of a non-cytopathic mutant virus defective in killing Vero cells. J Gen Virol 79: 1911–1921 [CrossRef] [PubMed].
    [Google Scholar]
  26. Lauber C., Gorbalenya A. E.. ( 2012;). Toward genetics-based virus taxonomy: comparative analysis of a genetics-based classification and the taxonomy of picornaviruses. J Virol 86: 3905–3915 [CrossRef] [PubMed].
    [Google Scholar]
  27. Lin J. Y., Shih S. R.. ( 2014;). Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. J Biomed Sci 21: 18 [CrossRef] [PubMed].
    [Google Scholar]
  28. Loddo B., Ferrari W., Brotzu G., Spanedda A.. ( 1962;). In vitro inhibition of infectivity of polio viruses by guanidine. Nature 193: 97–98 [CrossRef] [PubMed].
    [Google Scholar]
  29. López de Quinto S., Martínez-Salas E.. ( 2000;). Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6: 1380–1392 [CrossRef] [PubMed].
    [Google Scholar]
  30. Lunde B. M., Moore C., Varani G.. ( 2007;). RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8: 479–490 [CrossRef] [PubMed].
    [Google Scholar]
  31. Martínez-Salas E., Fernández-Miragall O.. ( 2004;). Picornavirus IRES: structure function relationship. Curr Pharm Des 10: 3757–3767 [CrossRef] [PubMed].
    [Google Scholar]
  32. Martínez-Salas E., Ramos R., Lafuente E., López de Quinto S.. ( 2001;). Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 82: 973–984 [CrossRef] [PubMed].
    [Google Scholar]
  33. Martínez-Salas E., Lozano G., Fernandez-Chamorro J., Francisco-Velilla R., Galan A., Diaz R.. ( 2013;). RNA-binding proteins impacting on internal initiation of translation. Int J Mol Sci 14: 21705–21726 [CrossRef] [PubMed].
    [Google Scholar]
  34. Meerovitch K., Svitkin Y. V., Lee H. S., Lejbkowicz F., Kenan D. J., Chan E. K., Agol V. I., Keene J. D., Sonenberg N.. ( 1993;). La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67: 3798–3807 [PubMed].
    [Google Scholar]
  35. Merrill M. K., Gromeier M.. ( 2006;). The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J Virol 80: 6936–6942 [CrossRef] [PubMed].
    [Google Scholar]
  36. Merrill M. K., Dobrikova E. Y., Gromeier M.. ( 2006;). Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J Virol 80: 3147–3156 [CrossRef] [PubMed].
    [Google Scholar]
  37. Núñez J. I., Baranowski E., Molina N., Ruiz-Jarabo C. M., Sánchez C., Domingo E., Sobrino F.. ( 2001;). A single amino acid substitution in nonstructural protein 3A can mediate adaptation of foot-and-mouth disease virus to the guinea pig. J Virol 75: 3977–3983 [CrossRef] [PubMed].
    [Google Scholar]
  38. Pacheco A., Martinez-Salas E.. ( 2010;). Insights into the biology of IRES elements through riboproteomic approaches. J Biomed Biotechnol 2010: 458927 [CrossRef] [PubMed].
    [Google Scholar]
  39. Palmenberg A. C.. ( 1990;). Proteolytic processing of picornaviral polyprotein. Annu Rev Microbiol 44: 603–623 [CrossRef] [PubMed].
    [Google Scholar]
  40. Pilipenko E. V., Blinov V. M., Chernov B. K., Dmitrieva T. M., Agol V. I.. ( 1989;). Conservation of the secondary structure elements of the 5′-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res 17: 5701–5711 [CrossRef] [PubMed].
    [Google Scholar]
  41. Pilipenko E. V., Pestova T. V., Kolupaeva V. G., Khitrina E. V., Poperechnaya A. N., Agol V. I., Hellen C. U.. ( 2000;). A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14: 2028–2045 [PubMed].
    [Google Scholar]
  42. Pilipenko E. V., Viktorova E. G., Guest S. T., Agol V. I., Roos R. P.. ( 2001;). Cell-specific proteins regulate viral RNA translation and virus-induced disease. EMBO J 20: 6899–6908 [CrossRef] [PubMed].
    [Google Scholar]
  43. Pisarev A. V., Chard L. S., Kaku Y., Johns H. L., Shatsky I. N., Belsham G. J.. ( 2004;). Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol 78: 4487–4497 [CrossRef] [PubMed].
    [Google Scholar]
  44. Pizzi M.. ( 1950;). Sampling variation of the fifty percent end-point, determined by the Reed-Muench (Behrens) method. Hum Biol 22: 151–190 [PubMed].
    [Google Scholar]
  45. Ramos R., Martínez-Salas E.. ( 1999;). Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5: 1374–1383 [CrossRef] [PubMed].
    [Google Scholar]
  46. Roberts L. O., Belsham G. J.. ( 1997;). Complementation of defective picornavirus internal ribosome entry site (IRES) elements by the coexpression of fragments of the IRES. Virology 227: 53–62 [CrossRef] [PubMed].
    [Google Scholar]
  47. Schneider-Schaulies J.. ( 2000;). Cellular receptors for viruses: links to tropism and pathogenesis. J Gen Virol 81: 1413–1429 [CrossRef] [PubMed].
    [Google Scholar]
  48. Serrano P., Pulido M. R., Sáiz M., Martínez-Salas E.. ( 2006;). The 3′ end of the foot-and-mouth disease virus genome establishes two distinct long-range RNA-RNA interactions with the 5′ end region. J Gen Virol 87: 3013–3022 [CrossRef] [PubMed].
    [Google Scholar]
  49. Sobrino F., Sáiz M., Jiménez-Clavero M. A., Núñez J. I., Rosas M. F., Baranowski E., Ley V.. ( 2001;). Foot-and-mouth disease virus: a long known virus, but a current threat. Vet Res 32: 1–30 [CrossRef] [PubMed].
    [Google Scholar]
  50. Sweeney T. R., Dhote V., Yu Y., Hellen C. U.. ( 2012;). A distinct class of internal ribosomal entry site in members of the Kobuvirus and proposed Salivirus and Paraturdivirus genera of the Picornaviridae. J Virol 86: 1468–1486 [CrossRef] [PubMed].
    [Google Scholar]
  51. Uddowla S., Hollister J., Pacheco J. M., Rodriguez L. L., Rieder E.. ( 2012;). A safe foot-and-mouth disease vaccine platform with two negative markers for differentiating infected from vaccinated animals. J Virol 86: 11675–11685 [CrossRef] [PubMed].
    [Google Scholar]
  52. Wimmer E., Hellen C. U., Cao X.. ( 1993;). Genetics of poliovirus. Annu Rev Genet 27: 353–436 [CrossRef] [PubMed].
    [Google Scholar]
  53. Yang D., Tu Y., Wang H., Zhou G., Yu L.. ( 2009;). Construction of infectious cDNA clone for PanAsia strain of FMDV serotype O. Chin J Prev Vet Med 31: 1–5.
    [Google Scholar]
  54. Yu Y., Abaeva I. S., Marintchev A., Pestova T. V., Hellen C. U.. ( 2011a;). Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Res 39: 4851–4865 [CrossRef] [PubMed].
    [Google Scholar]
  55. Yu Y., Wang H., Zhao L., Zhang C., Jiang Z., Yu L.. ( 2011b;). Fine mapping of a foot-and-mouth disease virus epitope recognized by serotype-independent monoclonal antibody 4B2. J Microbiol 49: 94–101 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000406
Loading
/content/journal/jgv/10.1099/jgv.0.000406
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error