1887

Abstract

Human immunodeficiency virus (HIV) is the causative agent of the deadly disease AIDS, which is characterized by the progressive decline of CD4T-cells. HIV-1-encoded proteins such as envelope gp120 (glycoprotein gp120), Tat (trans-activator of transcription), Nef (negative regulatory factor), Vpr (viral protein R), Vpu (viral protein unique) and protease are known to be effective in modulating host cell signalling pathways that lead to an alteration in apoptosis of both HIV-infected and uninfected bystander cells. Depending on the stage of the virus life cycle and host cell type, these viral proteins act as mediators of pro- or anti-apoptotic signals. HIV latency in viral reservoirs is a persistent phenomenon that has remained beyond the control of the human immune system. To cure HIV infections completely, it is crucial to reactivate latent HIV from cellular pools and to drive these apoptosis-resistant cells towards death. Several previous studies have reported the role of HIV-encoded proteins in apoptosis modulation, but the molecular basis for apoptosis evasion of some chronically HIV-infected cells and reactivated latently HIV-infected cells still needs to be elucidated. The current review summarizes our present understanding of apoptosis modulation in HIV-infected cells, uninfected bystander cells and latently infected cells, with a focus on highlighting strategies to activate the apoptotic pathway to kill latently infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000402
2016-04-01
2020-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/4/813.html?itemId=/content/journal/jgv/10.1099/jgv.0.000402&mimeType=html&fmt=ahah

References

  1. Abbas W., Herbein G.. 2013; T-Cell signaling in HIV-1 infection. Open Virol J7:57–71 [CrossRef][PubMed]
    [Google Scholar]
  2. Aillet F., Masutani H., Elbim C., Raoul H., Chêne L., Nugeyre M.-T., Paya C., Barré-Sinoussi F., Gougerot-Pocidalo M.-A., Israël N.. 1998; Human immunodeficiency virus induces a dual regulation of Bcl-2, resulting in persistent infection of CD4+ T- or monocytic cell lines. J Virol72:9698–9705[PubMed]
    [Google Scholar]
  3. Allers K., Hütter G., Hofmann J., Loddenkemper C., Rieger K., Thiel E., Schneider T.. 2011; Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood117:2791–2799 [CrossRef][PubMed]
    [Google Scholar]
  4. Andersen J. L., Le Rouzic E., Planelles V.. 2008; HIV-1 Vpr: mechanisms of G2 arrest and apoptosis. Exp Mol Pathol85:2–10 [CrossRef][PubMed]
    [Google Scholar]
  5. Anderson J. S.. 2013; Using TRIM5α as an HIV therapeutic: the alpha gene?. Expert Opin Biol Ther13:1029–1038 [CrossRef][PubMed]
    [Google Scholar]
  6. Arakaki R., Yamada A., Kudo Y., Hayashi Y., Ishimaru N.. 2014; Mechanism of activation-induced cell death of T cells and regulation of FasL expression. Crit Rev Immunol34:301–314 [CrossRef][PubMed]
    [Google Scholar]
  7. Archin N. M., Sung J. M., Garrido C., Soriano-Sarabia N., Margolis D. M.. 2014; Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol12:750–764 [CrossRef][PubMed]
    [Google Scholar]
  8. Badley A. D., Sainski A., Wightman F., Lewin S. R.. 2013; Altering cell death pathways as an approach to cure HIV infection. Cell Death Dis4:e718 [CrossRef][PubMed]
    [Google Scholar]
  9. Barton K. M., Archin N. M., Keedy K. S., Espeseth A. S., Zhang Y. L., Gale J., Wagner F. F., Holson E. B., Margolis D. M.. 2014; Selective HDAC inhibition for the disruption of latent HIV-1 infection. PLoS One9:e102684 [CrossRef][PubMed]
    [Google Scholar]
  10. Bartz S. R., Emerman M.. 1999; Human immunodeficiency virus type 1 Tat induces apoptosis and increases sensitivity to apoptotic signals by up-regulating FLICE/caspase-8. J Virol73:1956–1963[PubMed]
    [Google Scholar]
  11. Bauer G., Anderson J. S.. 2014; Stem cell transplantation in the context of HIV–how can we cure HIV infection?. Expert Rev Clin Immunol10:107–116 [CrossRef][PubMed]
    [Google Scholar]
  12. Berro R., de la Fuente C., Klase Z., Kehn K., Parvin L., Pumfery A., Agbottah E., Vertes A., Nekhai S., Kashanchi F.. 2007; Identifying the membrane proteome of HIV-1 latently infected cells. J Biol Chem282:8207–8218 [CrossRef][PubMed]
    [Google Scholar]
  13. Blanco R., Carrasco L., Ventoso I.. 2003; Cell killing by HIV-1 protease. J Biol Chem278:1086–1093 [CrossRef][PubMed]
    [Google Scholar]
  14. Bosque A., Planelles V.. 2009; Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood113:58–65 [CrossRef][PubMed]
    [Google Scholar]
  15. Bouchat S., Gatot J.-S., Kabeya K., Cardona C., Colin L., Herbein G., De Wit S., Clumeck N., Lambotte O., other authors. 2012; Histone methyltransferase inhibitors induce HIV-1 recovery in resting CD4+T cells from HIV-1-infected HAART-treated patients. AIDS26:1473–1482 [CrossRef][PubMed]
    [Google Scholar]
  16. Brooks D. G., Hamer D. H., Arlen P. A., Gao L., Bristol G., Kitchen C. M. R., Berger E. A., Zack J. A.. 2003; Molecular characterization, reactivation, and depletion of latent HIV. Immunity19:413–423 [CrossRef][PubMed]
    [Google Scholar]
  17. Campbell-Yesufu O. T., Gandhi R. T.. 2011; Update on human immunodeficiency virus (HIV)-2 infection. Clin Infect Dis52:780–787 [CrossRef][PubMed]
    [Google Scholar]
  18. Carter C. C., Onafuwa-Nuga A., McNamara L. A., Riddell J. IV, Bixby D., Savona M. R., Collins K. L.. 2010; HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs. Nat Med16:446–451 [CrossRef][PubMed]
    [Google Scholar]
  19. Caskey M., Klein F., Lorenzi J. C. C., Seaman M. S., West A. P. Jr, Buckley N., Kremer G., Nogueira L., Braunschweig M., other authors. 2015; Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature522:487–491 [CrossRef][PubMed]
    [Google Scholar]
  20. Castedo M., Roumier T., Blanco J., Ferri K. F., Barretina J., Tintignac L. A., Andreau K., Perfettini J.-L., Amendola A., other authors. 2002; Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope. EMBO J21:4070–4080 [CrossRef][PubMed]
    [Google Scholar]
  21. Cavaleiro R., Sousa A. E., Loureiro A., Victorino R. M.. 2000; Marked immunosuppressive effects of the HIV-2 envelope protein in spite of the lower HIV-2 pathogenicity. AIDS14:2679–2686 [CrossRef][PubMed]
    [Google Scholar]
  22. Cha L., Berry C. M., Nolan D., Castley A., Fernandez S., French M. A.. 2014; Interferon-alpha, immune activation and immune dysfunction in treated HIV infection. Clin Transl Immunology3:e10 [CrossRef][PubMed]
    [Google Scholar]
  23. Chahroudi A., Bosinger S. E., Vanderford T. H., Paiardini M., Silvestri G.. 2012; Natural SIV hosts: showing AIDS the door. Science335:1188–1193 [CrossRef][PubMed]
    [Google Scholar]
  24. Chehimi J., Papasavvas E., Tomescu C., Gekonge B., Abdulhaqq S., Raymond A., Hancock A., Vinekar K., Carty C., other authors. 2010; Inability of plasmacytoid dendritic cells to directly lyse HIV-infected autologous CD4+T cells despite induction of tumor necrosis factor-related apoptosis-inducing ligand. J Virol84:2762–2773 [CrossRef][PubMed]
    [Google Scholar]
  25. Chen Y., Hwang S.-L., Chan V. S. F., Chung N. P. Y., Wang S.-R., Li Z., Ma J., Lin C.-W., Hsieh Y.-J., other authors. 2013; Binding of HIV-1 gp120 to DC-SIGN promotes ASK-1-dependent activation-induced apoptosis of human dendritic cells. PLoS Pathog9:e1003100 [CrossRef][PubMed]
    [Google Scholar]
  26. Chomont N., El-Far M., Ancuta P., Trautmann L., Procopio F. A., Yassine-Diab B., Boucher G., Boulassel M.-R., Ghattas G., other authors. 2009; HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat Med15:893–900 [CrossRef][PubMed]
    [Google Scholar]
  27. Chun T.-W., Moir S., Fauci A. S.. 2015; HIV reservoirs as obstacles and opportunities for an HIV cure. Nat Immunol16:584–589 [CrossRef][PubMed]
    [Google Scholar]
  28. Coleman C. M., Wu L.. 2009; HIV interactions with monocytes and dendritic cells: viral latency and reservoirs. Retrovirology6:51 [CrossRef][PubMed]
    [Google Scholar]
  29. Cummins N. W., Badley A. D.. 2010; Mechanisms of HIV-associated lymphocyte apoptosis: 2010. Cell Death Dis1:e99 [CrossRef][PubMed]
    [Google Scholar]
  30. Cummins N. W., Badley A. D.. 2013; Anti-apoptotic mechanisms of HIV: lessons and novel approaches to curing HIV. Cell Mol Life Sci70:3355–3363 [CrossRef][PubMed]
    [Google Scholar]
  31. Cummins N. W., Badley A. D.. 2014; Making sense of how HIV kills infected CD4 T cells: implications for HIV cure. Mol Cell Ther2:20 [CrossRef][PubMed]
    [Google Scholar]
  32. Czabotar P. E., Lessene G., Strasser A., Adams J. M.. 2014; Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol15:49–63 [CrossRef][PubMed]
    [Google Scholar]
  33. Dahabieh M. S., Battivelli E., Verdin E.. 2015; Understanding HIV latency: the road to an HIV cure. Annu Rev Med66:407–421 [CrossRef][PubMed]
    [Google Scholar]
  34. de Mareuil J., Carre M., Barbier P., Campbell G. R., Lancelot S., Opi S., Esquieu D., Watkins J. D., Prevot C., other authors. 2005; HIV-1 Tat protein enhances microtubule polymerization. Retrovirology2:5 [CrossRef][PubMed]
    [Google Scholar]
  35. Del Corno M., Liu Q.-H., Schols D., de Clercq E., Gessani S., Freedman B. D., Collman R. G.. 2001; HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling. Blood98:2909–2916 [CrossRef][PubMed]
    [Google Scholar]
  36. Deng K., Pertea M., Rongvaux A., Wang L., Durand C. M., Ghiaur G., Lai J., McHugh H. L., Hao H., other authors. 2015; Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature517:381–385 [CrossRef][PubMed]
    [Google Scholar]
  37. Didigu C. A., Wilen C. B., Wang J., Duong J., Secreto A. J., Danet-Desnoyers G. A., Riley J. L., Gregory P. D., June C. H., other authors. 2014; Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+T cells from HIV-1 infection. Blood123:61–69 [CrossRef][PubMed]
    [Google Scholar]
  38. Doitsh G., Galloway N. L. K., Geng X., Yang Z., Monroe K. M., Zepeda O., Hunt P. W., Hatano H., Sowinski S., other authors. 2014; Cell death by pyroptosis drives CD4+T-cell depletion in HIV-1 infection. Nature505:509–514 [CrossRef][PubMed]
    [Google Scholar]
  39. Donahue D. A., Kuhl B. D., Sloan R. D., Wainberg M. A.. 2012; The viral protein Tat can inhibit the establishment of HIV-1 latency. J Virol86:3253–3263 [CrossRef][PubMed]
    [Google Scholar]
  40. Doyon G., Zerbato J., Mellors J. W., Sluis-Cremer N.. 2013; Disulfiram reactivates latent HIV-1 expression through depletion of the phosphatase and tensin homolog. AIDS27:F7–F11 [CrossRef][PubMed]
    [Google Scholar]
  41. Ebina H., Misawa N., Kanemura Y., Koyanagi Y.. 2013; Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep3:2510 [CrossRef][PubMed]
    [Google Scholar]
  42. Excler J.-L., Robb M. L., Kim J. H.. 2014; HIV-1 vaccines: challenges and new perspectives. Hum Vaccin Immunother10:1734–1746 [CrossRef][PubMed]
    [Google Scholar]
  43. Fernández Larrosa P. N., Croci D. O., Riva D. A., Bibini M., Luzzi R., Saracco M., Mersich S. E., Rabinovich G. A., Martínez Peralta L.. 2008; Apoptosis resistance in HIV-1 persistently-infected cells is independent of active viral replication and involves modulation of the apoptotic mitochondrial pathway. Retrovirology5:19 [CrossRef][PubMed]
    [Google Scholar]
  44. Février M., Dorgham K., Rebollo A.. 2011; CD4+T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses3:586–612 [CrossRef][PubMed]
    [Google Scholar]
  45. Fulda S.. 2014; Molecular pathways: targeting inhibitor of apoptosis proteins in cancer—from molecular mechanism to therapeutic application. Clin Cancer Res20:289–295 [CrossRef][PubMed]
    [Google Scholar]
  46. Fulda S., Galluzzi L., Kroemer G.. 2010; Targeting mitochondria for cancer therapy. Nat Rev Drug Discov9:447–464 [CrossRef][PubMed]
    [Google Scholar]
  47. Funderburg N., Luciano A. A., Jiang W., Rodriguez B., Sieg S. F., Lederman M. M.. 2008; Toll-like receptor ligands induce human T cell activation and death, a model for HIV pathogenesis. PLoS One3:e1915 [CrossRef][PubMed]
    [Google Scholar]
  48. Gaardbo J. C., Hartling H. J., Gerstoft J., Nielsen S. D.. 2012; Incomplete immune recovery in HIV infection: mechanisms, relevance for clinical care, and possible solutions. Clin Dev Immunol2012:670957 [CrossRef][PubMed]
    [Google Scholar]
  49. Gallastegui E., Millán-Zambrano G., Terme J.-M., Chávez S., Jordan A.. 2011; Chromatin reassembly factors are involved in transcriptional interference promoting HIV latency. J Virol85:3187–3202 [CrossRef][PubMed]
    [Google Scholar]
  50. Galluzzi L., Brenner C., Morselli E., Touat Z., Kroemer G.. 2008; Viral control of mitochondrial apoptosis. PLoS Pathog4:e1000018 [CrossRef][PubMed]
    [Google Scholar]
  51. Ganesan A., Crum-Cianflone N., Higgins J., Qin J., Rehm C., Metcalf J., Brandt C., Vita J., Decker C. F., other authors. 2011; High dose atorvastatin decreases cellular markers of immune activation without affecting HIV-1 RNA levels: results of a double-blind randomized placebo controlled clinical trial. J Infect Dis203:756–764 [CrossRef][PubMed]
    [Google Scholar]
  52. Geleziunas R., Xu W., Takeda K., Ichijo H., Greene W. C.. 2001; HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature410:834–838 [CrossRef][PubMed]
    [Google Scholar]
  53. Goila R., Banerjea A. C.. 1998; Sequence specific cleavage of the HIV-1 coreceptor CCR5 gene by a hammer-head ribozyme and a DNA-enzyme: inhibition of the coreceptor function by DNA-enzyme. FEBS Lett436:233–238 [CrossRef][PubMed]
    [Google Scholar]
  54. Gray L. R., Roche M., Flynn J. K., Wesselingh S. L., Gorry P. R., Churchill M. J.. 2014; Is the central nervous system a reservoir of HIV-1?. Curr Opin HIV AIDS9:552–558 [CrossRef][PubMed]
    [Google Scholar]
  55. Green D. S., Center D. M., Cruikshank W. W.. 2009; Human immunodeficiency virus type 1 gp120 reprogramming of CD4+T-cell migration provides a mechanism for lymphadenopathy. J Virol83:5765–5772 [CrossRef][PubMed]
    [Google Scholar]
  56. Green L. A., Yi R., Petrusca D., Wang T., Elghouche A., Gupta S. K., Petrache I., Clauss M.. 2014; HIV envelope protein gp120-induced apoptosis in lung microvascular endothelial cells by concerted upregulation of EMAP II and its receptor, CXCR3. Am J Physiol Lung Cell Mol Physiol306:L372–L382 [CrossRef][PubMed]
    [Google Scholar]
  57. Greenberg M., Hanauske-Abel H. M., Pe'ery T., Cracchiolo B. M., Palumbo P. E., Karn J., Mathews M.. 2014; The ‘kick-and-kill’ approach to a cure: going for the kill by selective induction of apoptosis in latently infected cells. In Abstracts of the Towards an HIV Cure Symposium, 2014 abstract PE37 LB pp60 Geneva: International AIDS Society;
    [Google Scholar]
  58. Haas A., Zimmermann K., Oxenius A.. 2011; Antigen-dependent and -independent mechanisms of T and B cell hyperactivation during chronic HIV-1 infection. J Virol85:12102–12113 [CrossRef][PubMed]
    [Google Scholar]
  59. Hanauske-Abel H. M., Saxena D., Palumbo P. E., Hanauske A.-R., Luchessi A. D., Cambiaghi T. D., Hoque M., Spino M., D'Alliessi Gandolfi D., other authors. 2013; Drug-induced reactivation of apoptosis abrogates HIV-1 infection. PLoS One8:e74414 [CrossRef][PubMed]
    [Google Scholar]
  60. Hashimoto F., Oyaizu N., Kalyanaraman V. S., Pahwa S.. 1997; Modulation of Bcl-2 protein by CD4 cross-linking: a possible mechanism for lymphocyte apoptosis in human immunodeficiency virus infection and for rescue of apoptosis by interleukin-2. Blood90:745–753[PubMed]
    [Google Scholar]
  61. Henrich T. J., Hu Z., Li J. Z., Sciaranghella G., Busch M. P., Keating S. M., Gallien S., Lin N. H., Giguel F. F., other authors. 2013; Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation. J Infect Dis207:1694–1702 [CrossRef][PubMed]
    [Google Scholar]
  62. Herbein G., Khan K. A.. 2008; Is HIV infection a TNF receptor signalling-driven disease?. Trends Immunol29:61–67 [CrossRef][PubMed]
    [Google Scholar]
  63. Herbein G., Mahlknecht U., Batliwalla F., Gregersen P., Pappas T., Butler J., O'Brien W. A., Verdin E.. 1998; Apoptosis of CD8+T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature395:189–194 [CrossRef][PubMed]
    [Google Scholar]
  64. Herbeuval J.-P., Nilsson J., Boasso A., Hardy A. W., Kruhlak M. J., Anderson S. A., Dolan M. J., Dy M., Andersson J., Shearer G. M.. 2006; Differential expression of IFN-alpha and TRAIL/DR5 in lymphoid tissue of progressor versus nonprogressor HIV-1-infected patients. Proc Natl Acad Sci U S A103:7000–7005 [CrossRef][PubMed]
    [Google Scholar]
  65. Hummelen R., Vos A. P., van't Land B., van Norren K., Reid G.. 2010; Altered host-microbe interaction in HIV: a target for intervention with pro- and prebiotics. Int Rev Immunol29:485–513 [CrossRef][PubMed]
    [Google Scholar]
  66. Iaria M. L., Fiorentini S., Focà E., Zicari S., Giagulli C., Caccuri F., Francisci D., Di Perri G., Castelli F., other authors. 2014; Synthetic HIV-1 matrix protein p17-based AT20-KLH therapeutic immunization in HIV-1-infected patients receiving antiretroviral treatment: a phase I safety and immunogenicity study. Vaccine32:1072–1078 [CrossRef][PubMed]
    [Google Scholar]
  67. Ipp H., Nkambule B. B., Reid T. D., de Swardt D., Bekker L.-G., Glashoff R. H.. 2014; CD4+T cells in HIV infection show increased levels of expression of a receptor for vasoactive intestinal peptide, VPAC2. Immunol Res60:11–15 [CrossRef][PubMed]
    [Google Scholar]
  68. Jaafoura S., de Goër de Herve M. G., Hernandez-Vargas E. A., Hendel-Chavez H., Abdoh M., Mateo M. C., Krzysiek R., Merad M., Seng R., other authors. 2014; Progressive contraction of the latent HIV reservoir around a core of less-differentiated CD4+ memory T Cells. Nat Commun5:5407 [CrossRef][PubMed]
    [Google Scholar]
  69. Katsikis P. D., Mueller Y. M., Villinger F.. 2011; The cytokine network of acute HIV infection: a promising target for vaccines and therapy to reduce viral set-point?. PLoS Pathog7:e1002055 [CrossRef][PubMed]
    [Google Scholar]
  70. Khan S. Z., Hand N., Zeichner S. L.. 2015; Apoptosis-induced activation of HIV-1 in latently infected cell lines. Retrovirology12:42 [CrossRef][PubMed]
    [Google Scholar]
  71. Khoo K. H., Verma C. S., Lane D. P.. 2014; Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov13:217–236 [CrossRef][PubMed]
    [Google Scholar]
  72. Klatt N. R., Silvestri G., Hirsch V.. 2012; Nonpathogenic simian immunodeficiency virus infections. Cold Spring Harb Perspect Med2:a007153 [CrossRef][PubMed]
    [Google Scholar]
  73. Klatt N. R., Canary L. A., Sun X., Vinton C. L., Funderburg N. T., Morcock D. R., Quiñones M., Deming C. B., Perkins M., other authors. 2013; Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques. J Clin Invest123:903–907[PubMed]
    [Google Scholar]
  74. Kogan M., Rappaport J.. 2011; HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology8:25 [CrossRef][PubMed]
    [Google Scholar]
  75. Kolesnitchenko V., Wahl L. M., Tian H., Sunila I., Tani Y., Hartmann D. P., Cossman J., Raffeld M., Orenstein J., Samelson L. E.. 1995; Human immunodeficiency virus 1 envelope-initiated G2-phase programmed cell death. Proc Natl Acad Sci U S A92:11889–11893 [CrossRef][PubMed]
    [Google Scholar]
  76. Kumar A., Abbas W., Herbein G.. 2013; TNF and TNF receptor superfamily members in HIV infection: new cellular targets for therapy?. Mediators Inflamm2013:484378 [CrossRef][PubMed]
    [Google Scholar]
  77. Laforge M., Petit F., Estaquier J., Senik A.. 2007; Commitment to apoptosis in CD4+T lymphocytes productively infected with human immunodeficiency virus type 1 is initiated by lysosomal membrane permeabilization, itself induced by the isolated expression of the viral protein Nef. J Virol81:11426–11440 [CrossRef][PubMed]
    [Google Scholar]
  78. Laird G. M., Bullen C. K., Rosenbloom D. I. S., Martin A. R., Hill A. L., Durand C. M., Siliciano J. D., Siliciano R. F.. 2015; Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest125:1901–1912 [CrossRef][PubMed]
    [Google Scholar]
  79. Lam S., Bollard C.. 2013; T-cell therapies for HIV. Immunotherapy5:407–414 [CrossRef][PubMed]
    [Google Scholar]
  80. Le Bras M., Borgne-Sanchez A., Touat Z., El Dein O. S., Deniaud A., Maillier E., Lecellier G., Rebouillat D., Lemaire C., other authors. 2006; Chemosensitization by knockdown of adenine nucleotide translocase-2. Cancer Res66:9143–9152 [CrossRef][PubMed]
    [Google Scholar]
  81. Lemke J., von Karstedt S., Zinngrebe J., Walczak H.. 2014; Getting TRAIL back on track for cancer therapy. Cell Death Differ21:1350–1364 [CrossRef][PubMed]
    [Google Scholar]
  82. Lenassi M., Cagney G., Liao M., Vaupotič T., Bartholomeeusen K., Cheng Y., Krogan N. J., Plemenitaš A., Peterlin B. M.. 2010; HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+T cells. Traffic11:110–122 [CrossRef][PubMed]
    [Google Scholar]
  83. Li H., Pauza C. D.. 2013; Critical roles for Akt kinase in controlling HIV envelope-mediated depletion of CD+T cells. Retrovirology10:60 [CrossRef][PubMed]
    [Google Scholar]
  84. Liu L., Patel B., Ghanem M. H., Bundoc V., Zheng Z., Morgan R. A., Rosenberg S. A., Dey B., Berger E. A.. 2015; Novel CD4-based bispecific chimeric antigen receptor designed for enhanced anti-HIV potency and absence of HIV entry receptor activity. J Virol89:6685–6694 [CrossRef][PubMed]
    [Google Scholar]
  85. López-Huertas M. R., Mateos E., Sánchez Del Cojo M., Gómez-Esquer F., Díaz-Gil G., Rodríguez-Mora S., López J. A., Calvo E., López-Campos G., other authors. 2013; The presence of HIV-1 Tat protein second exon delays Fas protein-mediated apoptosis in CD4+T lymphocytes: a potential mechanism for persistent viral production. J Biol Chem288:7626–7644 [CrossRef][PubMed]
    [Google Scholar]
  86. Marchetti G., Tincati C., Silvestri G.. 2013; Microbial translocation in the pathogenesis of HIV infection and AIDS. Clin Microbiol Rev26:2–18 [CrossRef][PubMed]
    [Google Scholar]
  87. McLean J. E., Ruck A., Shirazian A., Pooyaei-Mehr F., Zakeri Z. F.. 2008; Viral manipulation of cell death. Curr Pharm Des14:198–220 [CrossRef][PubMed]
    [Google Scholar]
  88. McNamara L. A., Collins K. L.. 2011; Hematopoietic stem/precursor cells as HIV reservoirs. Curr Opin HIV AIDS6:43–48 [CrossRef][PubMed]
    [Google Scholar]
  89. Mehla R., Bivalkar-Mehla S., Zhang R., Handy I., Albrecht H., Giri S., Nagarkatti P., Nagarkatti M., Chauhan A.. 2010; Bryostatin modulates latent HIV-1 infection via PKC and AMPK signaling but inhibits acute infection in a receptor independent manner. PLoS One5:e11160 [CrossRef][PubMed]
    [Google Scholar]
  90. Milush J. M., López-Vergès S., York V. A., Deeks S. G., Martin J. N., Hecht F. M., Lanier L. L., Nixon D. F.. 2013; CD56negCD16+ NK cells are activated mature NK cells with impaired effector function during HIV-1 infection. Retrovirology10:158 [CrossRef][PubMed]
    [Google Scholar]
  91. Monroe K. M., Yang Z., Johnson J. R., Geng X., Doitsh G., Krogan N. J., Greene W. C.. 2014; IFI16 DNA sensor is required for death of lymphoid CD4+T cells abortively infected with HIV. Science343:428–432 [CrossRef][PubMed]
    [Google Scholar]
  92. Mousseau G., Kessing C. F., Fromentin R., Trautmann L., Chomont N., Valente S. T.. 2015; The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio6:e00465-15 [CrossRef][PubMed]
    [Google Scholar]
  93. Murooka T. T., Deruaz M., Marangoni F., Vrbanac V. D., Seung E., von Andrian U. H., Tager A. M., Luster A. D., Mempel T. R.. 2012; HIV-infected T cells are migratory vehicles for viral dissemination. Nature490:283–287 [CrossRef][PubMed]
    [Google Scholar]
  94. Murray S. M., Down C. M., Boulware D. R., Stauffer W. M., Cavert W. P., Schacker T. W., Brenchley J. M., Douek D. C.. 2010; Reduction of immune activation with chloroquine therapy during chronic HIV infection. J Virol84:12082–12086 [CrossRef][PubMed]
    [Google Scholar]
  95. Muthumani K., Choo A. Y., Shedlock D. J., Laddy D. J., Sundaram S. G., Hirao L., Wu L., Thieu K. P., Chung C. W., other authors. 2008; Human immunodeficiency virus type 1 Nef induces programmed death 1 expression through a p38 mitogen-activated protein kinase-dependent mechanism. J Virol82:11536–11544 [CrossRef][PubMed]
    [Google Scholar]
  96. Napolitano L. A., Schmidt D., Gotway M. B., Ameli N., Filbert E. L., Ng M. M., Clor J. L., Epling L., Sinclair E., other authors. 2008; Growth hormone enhances thymic function in HIV-1-infected adults. J Clin Invest118:1085–1098[PubMed]
    [Google Scholar]
  97. Naranbhai V., Altfeld M., Karim S. S. A., Ndung'u T., Karim Q. A., Carr W. H.. 2013; Changes in natural killer cell activation and function during primary HIV-1 infection. PLoS One8:e53251 [CrossRef][PubMed]
    [Google Scholar]
  98. Nardacci R., Perfettini J.-L., Grieco L., Thieffry D., Kroemer G., Piacentini M.. 2015; Syncytial apoptosis signaling network induced by the HIV-1 envelope glycoprotein complex: an overview. Cell Death Dis6:e1846 [CrossRef][PubMed]
    [Google Scholar]
  99. Nicolini A., Ajmone-Cat M. A., Bernardo A., Levi G., Minghetti L.. 2001; Human immunodeficiency virus type-1 Tat protein induces nuclear factor (NF)-kappaB activation and oxidative stress in microglial cultures by independent mechanisms. J Neurochem79:713–716 [CrossRef][PubMed]
    [Google Scholar]
  100. Nie Z., Bren G. D., Rizza S. A., Badley A. D.. 2008; HIV protease cleavage of procaspase 8 is necessary for death of HIV-infected cells. Open Virol J2:1–7[CrossRef]
    [Google Scholar]
  101. Nisole S., Stoye J. P., Saı¨b A.. 2005; TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol3:799–808[CrossRef]
    [Google Scholar]
  102. Nomaguchi M., Fujita M., Adachi A.. 2008; Role of HIV-1 Vpu protein for virus spread and pathogenesis. Microbes Infect10:960–967 [CrossRef][PubMed]
    [Google Scholar]
  103. Novis C. L., Archin N. M., Buzon M. J., Verdin E., Round J. L., Lichterfeld M., Margolis D. M., Planelles V., Bosque A.. 2013; Reactivation of latent HIV-1 in central memory CD4+ T cells through TLR-1/2 stimulation. Retrovirology10:119 [CrossRef][PubMed]
    [Google Scholar]
  104. Nyamweya S., Hegedus A., Jaye A., Rowland-Jones S., Flanagan K. L., Macallan D. C.. 2013; Comparing HIV-1 and HIV-2 infection: lessons for viral immunopathogenesis. Rev Med Virol23:221–240 [CrossRef][PubMed]
    [Google Scholar]
  105. Pal S. K., Reckamp K., Yu H., Figlin R. A.. 2010; Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs19:1355–1366 [CrossRef][PubMed]
    [Google Scholar]
  106. Peggs K. S., Quezada S. A., Allison J. P.. 2009; Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol157:9–19 [CrossRef][PubMed]
    [Google Scholar]
  107. Perfettini J.-L., Roumier T., Castedo M., Larochette N., Boya P., Raynal B., Lazar V., Ciccosanti F., Nardacci R., other authors. 2004; NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope. J Exp Med199:629–640 [CrossRef][PubMed]
    [Google Scholar]
  108. Petrovas C., Mueller Y. M., Dimitriou I. D., Bojczuk P. M., Mounzer K. C., Witek J., Altman J. D., Katsikis P. D.. 2004; HIV-specific CD8+T cells exhibit markedly reduced levels of Bcl-2 and Bcl-xL. J Immunol172:4444–4453 [CrossRef][PubMed]
    [Google Scholar]
  109. Piguet V., Caucheteux S. M., Iannetta M., Hosmalin A.. 2014; Altered antigen-presenting cells during HIV-1 infection. Curr Opin HIV AIDS9:478–484 [CrossRef][PubMed]
    [Google Scholar]
  110. Ping Y.-H., Rana T. M.. 2001; DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem276:12951–12958 [CrossRef][PubMed]
    [Google Scholar]
  111. Poonia B., Pauza C. D., Salvato M. S.. 2009; Role of the Fas/FasL pathway in HIV or SIV disease. Retrovirology6:91 [CrossRef][PubMed]
    [Google Scholar]
  112. Rasola A., Gramaglia D., Boccaccio C., Comoglio P. M.. 2001; Apoptosis enhancement by the HIV-1 Nef protein. J Immunol166:81–88 [CrossRef][PubMed]
    [Google Scholar]
  113. Reshi M. L., Su Y.-C., Hong J.-R.. 2014; RNA viruses: ROS-mediated cell death. Int J Cell Biol2014:467452 [CrossRef][PubMed]
    [Google Scholar]
  114. Rezaei S. D., Cameron P. U.. 2015; Human immunodeficiency virus (HIV)-1 integration sites in viral latency. Curr HIV/AIDS Rep12:88–96 [CrossRef][PubMed]
    [Google Scholar]
  115. Richard J., Sindhu S., Pham T. N. Q., Belzile J.-P., Cohen É.A.. 2010; HIV-1 Vpr up-regulates expression of ligands for the activating NKG2D receptor and promotes NK cell-mediated killing. Blood115:1354–1363 [CrossRef][PubMed]
    [Google Scholar]
  116. Rumlová M., Krˇížová I., Keprová A., Hadravová R., Doležal M., Strohalmová K., Pichová I., Hájek M., Ruml T.. 2014; HIV-1 protease-induced apoptosis. Retrovirology11:37 [CrossRef][PubMed]
    [Google Scholar]
  117. Sainski A. M., Dai H., Natesampillai S., Pang Y.-P., Bren G. D., Cummins N. W., Correia C., Meng X. W., Tarara J. E., other authors. 2014; Casp8p41 generated by HIV protease kills CD4+T cells through direct Bak activation. J Cell Biol206:867–876 [CrossRef][PubMed]
    [Google Scholar]
  118. Sasson S. C., Kelleher A. D.. 2014; Site-specific host gene modification by zinc finger nucleases: pointing the way to drug free control of HIV-1?. Clin Transl Immunology3:e19 [CrossRef][PubMed]
    [Google Scholar]
  119. Sebastian N. T., Collins K. L.. 2014; Targeting HIV latency: resting memory T cells, hematopoietic progenitor cells and future directions. Expert Rev Anti Infect Ther12:1187–1201 [CrossRef][PubMed]
    [Google Scholar]
  120. Shan L., Deng K., Shroff N. S., Durand C. M., Rabi S. A., Yang H.-C., Zhang H., Margolick J. B., Blankson J. N., Siliciano R. F.. 2012; Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity36:491–501 [CrossRef][PubMed]
    [Google Scholar]
  121. Shen A., Yang H.-C., Zhou Y., Chase A. J., Boyer J. D., Zhang H., Margolick J. B., Zink M. C., Clements J. E., Siliciano R. F.. 2007; Novel pathway for induction of latent virus from resting CD4+T cells in the simian immunodeficiency virus/macaque model of human immunodeficiency virus type 1 latency. J Virol81:1660–1670 [CrossRef][PubMed]
    [Google Scholar]
  122. Shirakawa K., Chavez L., Hakre S., Calvanese V., Verdin E.. 2013; Reactivation of latent HIV by histone deacetylase inhibitors. Trends Microbiol21:277–285 [CrossRef][PubMed]
    [Google Scholar]
  123. Siliciano J. D., Kajdas J., Finzi D., Quinn T. C., Chadwick K., Margolick J. B., Kovacs C., Gange S. J., Siliciano R. F.. 2003; Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+T cells. Nat Med9:727–728 [CrossRef][PubMed]
    [Google Scholar]
  124. Silvestris F., Nagata S., Cafforio P., Silvestris N., Dammacco F.. 1996; Cross-linking of Fas by antibodies to a peculiar domain of gp120 V3 loop can enhance T cell apoptosis in HIV-1-infected patients. J Exp Med184:2287–2300 [CrossRef][PubMed]
    [Google Scholar]
  125. Spivak A. M., Andrade A., Eisele E., Hoh R., Bacchetti P., Bumpus N. N., Emad F., Buckheit R. III, McCance-Katz E. F., other authors. 2014; A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin Infect Dis58:883–890 [CrossRef][PubMed]
    [Google Scholar]
  126. Stoddart C. A., Geleziunas R., Ferrell S., Linquist-Stepps V., Moreno M. E., Bare C., Xu W., Yonemoto W., Bresnahan P. A., other authors. 2003; Human immunodeficiency virus type 1 Nef-mediated downregulation of CD4 correlates with Nef enhancement of viral pathogenesis. J Virol77:2124–2133 [CrossRef][PubMed]
    [Google Scholar]
  127. Strebel K.. 2014; HIV-1 Vpu – an ion channel in search of a job. Biochim Biophys Acta1838:1074–1081 [CrossRef][PubMed]
    [Google Scholar]
  128. Tan J., Wang X., Devadas K., Zhao J., Zhang P., Hewlett I.. 2013; Some mechanisms of FLIP expression in inhibition of HIV-1 replication in Jurkat cells, CD4+T cells and PBMCs. J Cell Physiol228:2305–2313 [CrossRef][PubMed]
    [Google Scholar]
  129. Tanaka M., Ueno T., Nakahara T., Sasaki K., Ishimoto A., Sakai H.. 2003; Downregulation of CD4 is required for maintenance of viral infectivity of HIV-1. Virology311:316–325 [CrossRef][PubMed]
    [Google Scholar]
  130. Thomas S., Quinn B. A., Das S. K., Dash R., Emdad L., Dasgupta S., Wang X.-Y., Dent P., Reed J. C., other authors. 2013; Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets17:61–75 [CrossRef][PubMed]
    [Google Scholar]
  131. Tyagi M., Bukrinsky M.. 2012; Human immunodeficiency virus (HIV) latency: the major hurdle in HIV eradication. Mol Med18:1096–1108 [CrossRef][PubMed]
    [Google Scholar]
  132. Tyagi M., Pearson R. J., Karn J.. 2010; Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol84:6425–6437 [CrossRef][PubMed]
    [Google Scholar]
  133. van Grevenynghe J., Cubas R. A., Noto A., DaFonseca S., He Z., Peretz Y., Filali-Mouhim A., Dupuy F. P., Procopio F. A., other authors. 2011; Loss of memory B cells during chronic HIV infection is driven by Foxo3a- and TRAIL-mediated apoptosis. J Clin Invest121:3877–3888 [CrossRef][PubMed]
    [Google Scholar]
  134. Van Lint C., Emiliani S., Ott M., Verdin E.. 1996; Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J15:1112–1120[PubMed]
    [Google Scholar]
  135. Van Lint C., Bouchat S., Marcello A.. 2013; HIV-1 transcription and latency: an update. Retrovirology10:67 [CrossRef][PubMed]
    [Google Scholar]
  136. Vashistha H., Husain M., Kumar D., Singhal P. C.. 2009; Tubular cell HIV-1 gp120 expression induces caspase 8 activation and apoptosis. Ren Fail31:303–312 [CrossRef][PubMed]
    [Google Scholar]
  137. Vendeville A., Rayne F., Bonhoure A., Bettache N., Montcourrier P., Beaumelle B.. 2004; HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell15:2347–2360 [CrossRef][PubMed]
    [Google Scholar]
  138. Wang F.-X., Xu Y., Sullivan J., Souder E., Argyris E. G., Acheampong E. A., Fisher J., Sierra M., Thomson M. M., other authors. 2005; IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J Clin Invest115:128–137 [CrossRef][PubMed]
    [Google Scholar]
  139. Wang X., Ragupathy V., Zhao J., Hewlett I.. 2011; Molecules from apoptotic pathways modulate HIV-1 replication in Jurkat cells. Biochem Biophys Res Commun414:20–24 [CrossRef][PubMed]
    [Google Scholar]
  140. Weinberger L. S., Burnett J. C., Toettcher J. E., Arkin A. P., Schaffer D. V.. 2005; Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell122:169–182 [CrossRef][PubMed]
    [Google Scholar]
  141. Wightman F., Solomon A., Khoury G., Green J. A., Gray L., Gorry P. R., Ho Y. S., Saksena N. K., Hoy J., other authors. 2010; Both CD31+ and CD31−  naive CD4+T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J Infect Dis202:1738–1748 [CrossRef][PubMed]
    [Google Scholar]
  142. Williams S. A., Chen L.-F., Kwon H., Fenard D., Bisgrove D., Verdin E., Greene W. C.. 2004; Prostratin antagonizes HIV latency by activating NF-kappaB. J Biol Chem279:42008–42017 [CrossRef][PubMed]
    [Google Scholar]
  143. Williams S. A., Kwon H., Chen L.-F., Greene W. C.. 2007; Sustained induction of NF-kappa B is required for efficient expression of latent human immunodeficiency virus type 1. J Virol81:6043–6056 [CrossRef][PubMed]
    [Google Scholar]
  144. Winckelmann A. A., Munk-Petersen L. V., Rasmussen T. A., Melchjorsen J., Hjelholt T. J., Montefiori D., Østergaard L., Søgaard O. S., Tolstrup M.. 2013; Administration of a Toll-like receptor 9 agonist decreases the proviral reservoir in virologically suppressed HIV-infected patients. PLoS One8:e62074 [CrossRef][PubMed]
    [Google Scholar]
  145. Wolf D., Witte V., Laffert B., Blume K., Stromer E., Trapp S., d'Aloja P., Schürmann A., Baur A. S.. 2001; HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med7:1217–1224 [CrossRef][PubMed]
    [Google Scholar]
  146. Xing S., Bullen C. K., Shroff N. S., Shan L., Yang H.-C., Manucci J. L., Bhat S., Zhang H., Margolick J. B., other authors. 2011; Disulfiram reactivates latent HIV-1 in a Bcl-2-transduced primary CD4+T cell model without inducing global T cell activation. J Virol85:6060–6064 [CrossRef][PubMed]
    [Google Scholar]
  147. Yin Y., Zhang S., Luo H., Zhang X., Geng G., Li J., Guo X., Cai W., Li L., other authors. 2015; Interleukin 7 up-regulates CD95 protein on CD4+T cells by affecting mRNA alternative splicing: priming for a synergistic effect on HIV-1 reservoir maintenance. J Biol Chem290:35–45 [CrossRef][PubMed]
    [Google Scholar]
  148. Zaia J. A., Forman S. J.. 2013; Transplantation in HIV-infected subjects: is cure possible?. Hematology (Am Soc Hematol Educ Program)2013:389–393 [CrossRef][PubMed]
    [Google Scholar]
  149. Zawacka-Pankau J., Selivanova G.. 2015; Pharmacological reactivation of p53 as a strategy to treat cancer. J Intern Med277:248–259 [CrossRef][PubMed]
    [Google Scholar]
  150. Zhou Y., Zhang H., Siliciano J. D., Siliciano R. F.. 2005; Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+T cells. J Virol79:2199–2210 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000402
Loading
/content/journal/jgv/10.1099/jgv.0.000402
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error