1887

Abstract

Rotavirus virions are formed by three concentric protein layers that enclose the 11 dsRNA genome segments and the viral proteins VP1 and VP3. Interactions amongst the capsid proteins (VP2, VP6, VP7 and VP4) have been described to play a major role in viral fitness, whilst restricting the reassortment of the genomic segments during co-infection with different rotavirus strains. In this work we describe and characterize the linkage between VP6 and VP7 proteins based on structural and genomic analyses of group A rotavirus strains circulating in Argentinean horses. Strains with the VP7 genotype G3 showed a strong association with the VP6 genotype I6, whilst strains with G14 were associated with the I2 genotype. Most of the differences on the VP6 and VP7 proteins were observed in interactive regions between the two proteins, suggesting that VP6 : VP7 interactions may drive the co-evolution and co-segregation of their respective gene segments.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000397
2016-04-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/4/912.html?itemId=/content/journal/jgv/10.1099/jgv.0.000397&mimeType=html&fmt=ahah

References

  1. Aoki S. T. , Settembre E. C. , Trask S. D. , Greenberg H. B. , Harrison S. C. , Dormitzer P. R. . ( 2009;). Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324: 1444–1447 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bailey K. E. , Gilkerson J. R. , Browning G. F. . ( 2013;). Equine rotaviruses – current understanding and continuing challenges. Vet Microbiol 167: 135–144 [CrossRef] [PubMed].
    [Google Scholar]
  3. Benati F. J. , Maranhão A. G. , Lima R. S. , da Silva R. C. , Santos N. . ( 2010;). Multiple-gene characterization of rotavirus strains: evidence of genetic linkage among the VP7-, VP4-, VP6-, and NSP4-encoding genes. J Med Virol 82: 1797–1802 [CrossRef] [PubMed].
    [Google Scholar]
  4. Browning G. F. , Chalmers R. M. , Sale C. S. H. , Fitzgerald T. A. , Snodgrass D. R. . ( 1991;). Homotypic and heterotypic serum and milk antibody to rotavirus in normal, infected and vaccinated horses. Vet Microbiol 27: 231–244 [CrossRef] [PubMed].
    [Google Scholar]
  5. Charpilienne A. , Lepault J. , Rey F. , Cohen J. . ( 2002;). Identification of rotavirus VP6 residues located at the interface with VP2 that are essential for capsid assembly and transcriptase activity. J Virol 76: 7822–7831 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chen J. Z. , Settembre E. C. , Aoki S. T. , Zhang X. , Bellamy A. R. , Dormitzer P. R. , Harrison S. C. , Grigorieff N. . ( 2009;). Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci U S A 106: 10644–10648 [CrossRef] [PubMed].
    [Google Scholar]
  7. Ciarlet M. , Reggeti F. , Piña C. I. , Liprandi F. . ( 1994;). Equine rotaviruses with G14 serotype specificity circulate among Venezuelan horses. J Clin Microbiol 32: 2609–2612 [PubMed].
    [Google Scholar]
  8. Ciarlet M. , Isa P. , Conner M. E. , Liprandi F. . ( 2001;). Antigenic and molecular analyses reveal that the equine rotavirus strain H-1 is closely related to porcine, but not equine, rotaviruses: interspecies transmission from pigs to horses?. Virus Genes 22: 5–20 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dugan V. G. , Chen R. , Spiro D. J. , Sengamalay N. , Zaborsky J. , Ghedin E. , Nolting J. , Swayne D. E. , Runstadler J. A. , other authors . ( 2008;). The evolutionary genetics and emergence of avian influenza viruses in wild birds. PLoS Pathog 4: e1000076 [CrossRef] [PubMed].
    [Google Scholar]
  10. Estes M. K. , Greenberg H. B. . ( 2013;). Rotaviruses. . In Fields Virology , 6th edn., pp. 1347–1401. Edited by Knipe D. M. , Howley P. . Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins;.
    [Google Scholar]
  11. Estes M. K. , Kang G. , Zeng C. Q. , Crawford S. E. , Ciarlet M. . ( 2001;). Pathogenesis of rotavirus gastroenteritis. Novartis Found Symp 238: 82–96 [CrossRef] [PubMed].
    [Google Scholar]
  12. Flewett T. H. , Bryden A. S. , Davies H. . ( 1975;). Letter: Virus diarrhoea in foals and other animals. Vet Rec 96: eJMM [PubMed].
    [Google Scholar]
  13. Garaicoechea L. , Miño S. , Ciarlet M. , Fernández F. , Barrandeguy M. , Parreño V. . ( 2011;). Molecular characterization of equine rotaviruses circulating in Argentinean foals during a 17-year surveillance period (1992–2008). Vet Microbiol 148: 150–160 [CrossRef] [PubMed].
    [Google Scholar]
  14. Ghosh S. , Taniguchi K. , Aida S. , Ganesh B. , Kobayashi N. . ( 2013;). Whole genomic analyses of equine group A rotaviruses from Japan: evidence for bovine-to-equine interspecies transmission and reassortment events. Vet Microbiol 166: 474–485 [CrossRef] [PubMed].
    [Google Scholar]
  15. Graham A. , Kudesia G. , Allen A. M. , Desselberger U. . ( 1987;). Reassortment of human rotavirus possessing genome rearrangements with bovine rotavirus: evidence for host cell selection. J Gen Virol 68: 115–122 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hall T. A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  17. Heiman E. M. , McDonald S. M. , Barro M. , Taraporewala Z. F. , Bar-Magen T. , Patton J. T. . ( 2008;). Group A human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J Virol 82: 11106–11116 [CrossRef] [PubMed].
    [Google Scholar]
  18. Isa P. , Wood A. R. , Netherwood T. , Ciarlet M. , Imagawa H. , Snodgrass D. R. . ( 1996;). Survey of equine rotaviruses shows conservation of one P genotype in background of two G genotypes. Arch Virol 141: 1601–1612 [CrossRef] [PubMed].
    [Google Scholar]
  19. Iturriza-Gòmara M. , Anderton E. , Kang G. , Gallimore C. , Phillips W. , Desselberger U. , Gray J. . ( 2003;). Evidence for genetic linkage between the gene segments encoding NSP4 and VP6 proteins in common and reassortant human rotavirus strains. J Clin Microbiol 41: 3566–3573 [CrossRef] [PubMed].
    [Google Scholar]
  20. Larkin M. A. , Blackshields G. , Brown N. P. , Chenna R. , McGettigan P. A. , McWilliam H. , Valentin F. , Wallace I. M. , Wilm A. , other authors . ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  21. Li Z. , Baker M. L. , Jiang W. , Estes M. K. , Prasad B. V. V. . ( 2009;). Rotavirus architecture at subnanometer resolution. J Virol 83: 1754–1766 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lubeck M. D. , Palese P. , Schulman J. L. . ( 1979;). Nonrandom association of parental genes in influenza A virus recombinants. Virology 95: 269–274 [CrossRef] [PubMed].
    [Google Scholar]
  23. Ma Y. , Wen X. , Hoshino Y. , Yuan L. . ( 2015;). Cloning and nucleotide sequence analyses of 11 genome segments of two American and one British equine rotavirus strains. Vet Microbiol 176: 172–178 [CrossRef] [PubMed].
    [Google Scholar]
  24. Magdesian K. G. , Dwyer R. M. , Gonzalez Arguedas M. . ( 2014;). Viral diarrhea. . In Equine Infectious Diseases , 2nd edn., pp. 198–203. Edited by Sellon D. C. , Long M. T. . St Louis, MO: Saunders;.[CrossRef]
    [Google Scholar]
  25. Martella V. , Bányai K. , Matthijnssens J. , Buonavoglia C. , Ciarlet M. . ( 2010;). Zoonotic aspects of rotaviruses. Vet Microbiol 140: 246–255 [CrossRef] [PubMed].
    [Google Scholar]
  26. Mathieu M. , Petitpas I. , Navaza J. , Lepault J. , Kohli E. , Pothier P. , Prasad B. V. , Cohen J. , Rey F. A. . ( 2001;). Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion. EMBO J 20: 1485–1497 [CrossRef] [PubMed].
    [Google Scholar]
  27. Matthijnssens J. , Miño S. , Papp H. , Potgieter C. , Novo L. , Heylen E. , Zeller M. , Garaicoechea L. , Badaracco A. , other authors . ( 2012;). Complete molecular genome analyses of equine rotavirus A strains from different continents reveal several novel genotypes and a largely conserved genotype constellation. J Gen Virol 93: 866–875 [CrossRef] [PubMed].
    [Google Scholar]
  28. Matthijnssens J. , Ons E. , De Coster S. , Conceição-Neto N. , Gryspeerdt A. , Van Ranst M. , Raue R. . ( 2015;). Molecular characterization of equine rotaviruses isolated in Europe in 2013: implications for vaccination. Vet Microbiol 176: 179–185 [CrossRef] [PubMed].
    [Google Scholar]
  29. McClain B. , Settembre E. , Temple B. R. S. , Bellamy A. R. , Harrison S. C. . ( 2010;). X-ray crystal structure of the rotavirus inner capsid particle at 3.8 Å resolution. J Mol Biol 397: 587–599 [CrossRef] [PubMed].
    [Google Scholar]
  30. McDonald S. M. , Matthijnssens J. , McAllen J. K. , Hine E. , Overton L. , Wang S. , Lemey P. , Zeller M. , Van Ranst M. , other authors . ( 2009;). Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS Pathog 5: e1000634 [CrossRef] [PubMed].
    [Google Scholar]
  31. Mihalov-Kovács E. , Gellért Á. , Marton S. , Farkas S. L. , Fehér E. , Oldal M. , Jakab F. , Martella V. , Bányai K. . ( 2015;). Candidate new rotavirus species in sheltered dogs, Hungary. Emerg Infect Dis 21: 660–663 [CrossRef] [PubMed].
    [Google Scholar]
  32. Miño S. , Matthijnssens J. , Badaracco A. , Garaicoechea L. , Zeller M. , Heylen E. , Van Ranst M. , Barrandeguy M. , Parreño V. . ( 2013;). Equine G3P[3] rotavirus strain E3198 related to simian RRV and feline/canine-like rotaviruses based on complete genome analyses. Vet Microbiol 161: 239–246 [CrossRef] [PubMed].
    [Google Scholar]
  33. Miño S. , Kern A. , Barrandeguy M. , Parreño V. . ( 2015;). Comparison of two commercial kits and an in-house ELISA for the detection of equine rotavirus in foal feces. J Virol Methods 222: 1–10 [CrossRef] [PubMed].
    [Google Scholar]
  34. Nemoto M. , Nagai M. , Tsunemitsu H. , Omatsu T. , Furuya T. , Shirai J. , Kondo T. , Fujii Y. , Todaka R. , other authors . ( 2015;). Whole-genome sequence analysis of G3 and G14 equine group A rotaviruses isolated in the late 1990s and 2009–2010. Arch Virol 160: 1171–1179 [CrossRef] [PubMed].
    [Google Scholar]
  35. Nibert M. L. , Margraf R. L. , Coombs K. M. . ( 1996;). Nonrandom segregation of parental alleles in reovirus reassortants. J Virol 70: 7295–7300 [PubMed].
    [Google Scholar]
  36. Pettersen E. F. , Goddard T. D. , Huang C. C. , Couch G. S. , Greenblatt D. M. , Meng E. C. , Ferrin T. E. . ( 2004;). UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25: 1605–1612 [CrossRef] [PubMed].
    [Google Scholar]
  37. Roy A. , Kucukural A. , Zhang Y. . ( 2010;). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5: 725–738 [CrossRef] [PubMed].
    [Google Scholar]
  38. Santos N. , Volotão E. M. , Soares C. C. , Albuquerque M. C. M. , da Silva F. M. , Chizhikov V. , Hoshino Y. . ( 2003;). VP7 gene polymorphism of serotype G9 rotavirus strains and its impact on G genotype determination by PCR. Virus Res 93: 127–138 [CrossRef] [PubMed].
    [Google Scholar]
  39. Settembre E. C. , Chen J. Z. , Dormitzer P. R. , Grigorieff N. , Harrison S. C. . ( 2011;). Atomic model of an infectious rotavirus particle. EMBO J 30: 408–416 [CrossRef] [PubMed].
    [Google Scholar]
  40. Song X. F. , Hao Y. . ( 2009;). Adaptive evolution of rotavirus VP7 and NSP4 genes in different species. Comput Biol Chem 33: 344–349 [CrossRef] [PubMed].
    [Google Scholar]
  41. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  42. Taniguchi K. , Urasawa T. , Urasawa S. . ( 1994;). Species specificity and interspecies relatedness in VP4 genotypes demonstrated by VP4 sequence analysis of equine, feline, and canine rotavirus strains. Virology 200: 390–400 [CrossRef] [PubMed].
    [Google Scholar]
  43. Trask S. D. , Dormitzer P. R. . ( 2006;). Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins. J Virol 80: 11293–11304 [CrossRef] [PubMed].
    [Google Scholar]
  44. Trask S. D. , Ogden K. M. , Patton J. T. . ( 2012;). Interactions among capsid proteins orchestrate rotavirus particle functions. Curr Opin Virol 2: 373–379 [CrossRef] [PubMed].
    [Google Scholar]
  45. Trojnar E. , Sachsenröder J. , Twardziok S. , Reetz J. , Otto P. H. , Johne R. . ( 2013;). Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J Gen Virol 94: 136–142 [CrossRef] [PubMed].
    [Google Scholar]
  46. Weinberg G. A. , Teel E. N. , Mijatovic-Rustempasic S. , Payne D. C. , Roy S. , Foytich K. , Parashar U. D. , Gentsch J. R. , Bowen M. D. . ( 2013;). Detection of novel rotavirus strain by vaccine postlicensure surveillance. Emerg Infect Dis 19: 1321–1323 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000397
Loading
/content/journal/jgv/10.1099/jgv.0.000397
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error