Crystal structure of the mouse hepatitis virus ns2 phosphodiesterase domain that antagonizes RNase L activation Free

Abstract

Prior studies have demonstrated that the mouse hepatitis virus (MHV) A59 strain ns2 protein is a member of the 2H phosphoesterase family and exhibits 2′,5′-phosphodiesterase (PDE) activity. During the IFN antiviral response, ns2 cleaves 2′,5′-oligoadenylate (2-5A), a key mediator of RNase L activation, thereby subverting the activation of RNase L and evading host innate immunity. However, the mechanism of 2-5A cleavage by ns2 remains unclear. Here, we present the crystal structure of the MHV ns2 PDE domain and demonstrate a PDE fold similar to that of the cellular protein, a kinase anchoring protein 7 central domain (AKAP7) and rotavirus VP3 carboxy-terminal domain. The structure displays a pair of strictly conserved HxT/Sx motifs and forms a deep, positively charged catalytic groove with β-sheets and an arginine-containing loop. These findings provide insight into the structural basis for 2-5A binding of MHV ns2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000395
2016-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/4/880.html?itemId=/content/journal/jgv/10.1099/jgv.0.000395&mimeType=html&fmt=ahah

References

  1. Adams P. D., Grosse-Kunstleve R. W., Hung L.-W., Ioerger T. R., McCoy A. J., Moriarty N. W., Read R. J., Sacchettini J. C., Sauter N. K., Terwilliger T. C. 2002; phenix: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58:1948–1954 [View Article][PubMed]
    [Google Scholar]
  2. Brandmann T., Jinek M. 2015; Crystal structure of the C-terminal 2′,5′-phosphodiesterase domain of group A rotavirus protein VP3. Proteins 83:997–1002 [View Article][PubMed]
    [Google Scholar]
  3. Cole J. L., Carroll S. S., Blue E. S., Viscount T., Kuo L. C. 1997; Activation of RNase L by 2′,5′-oligoadenylates. Biophysical characterization. J Biol Chem 272:19187–19192 [View Article][PubMed]
    [Google Scholar]
  4. Der S. D., Zhou A., Williams B. R., Silverman R. H. 1998; Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 95:15623–15628 [View Article][PubMed]
    [Google Scholar]
  5. Desselberger U. 2014; Rotaviruses. Virus Res 190:75–96 [View Article][PubMed]
    [Google Scholar]
  6. Dong B., Silverman R. H. 1995; 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J Biol Chem 270:4133–4137 [View Article][PubMed]
    [Google Scholar]
  7. Emsley P., Cowtan K. 2004; Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132 [View Article][PubMed]
    [Google Scholar]
  8. Gold M. G., Smith F. D., Scott J. D., Barford D. 2008; AKAP18 contains a phosphoesterase domain that binds AMP. J Mol Biol 375:1329–1343 [View Article][PubMed]
    [Google Scholar]
  9. Gusho E., Zhang R., Jha B. K., Thornbrough J. M., Dong B., Gaughan C., Elliott R., Weiss S. R., Silverman R. H. 2014; Murine AKAP7 has a 2′,5′-phosphodiesterase domain that can complement an inactive murine coronavirus ns2 gene. MBio 5:e01312–e01314 [View Article][PubMed]
    [Google Scholar]
  10. Han Y., Donovan J., Rath S., Whitney G., Chitrakar A., Korennykh A. 2014; Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response. Science 343:1244–1248 [View Article][PubMed]
    [Google Scholar]
  11. Heras B., Martin J. L. 2005; Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61:1173–1180 [View Article][PubMed]
    [Google Scholar]
  12. Hovanessian A. G., Justesen J. 2007; The human 2′-5’oligoadenylate synthetase family: unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie 89:779–788 [View Article][PubMed]
    [Google Scholar]
  13. Huang H., Zeqiraj E., Dong B., Jha B. K., Duffy N. M., Orlicky S., Thevakumaran N., Talukdar M., Pillon M. C., other authors. 2014; Dimeric structure of pseudokinase RNase L bound to 2-5A reveals a basis for interferon-induced antiviral activity. Mol Cell 53:221–234 [View Article][PubMed]
    [Google Scholar]
  14. Kerr I. M., Brown R. E. 1978; pppA2’p5’A2’p5’A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A 75:256–260 [View Article][PubMed]
    [Google Scholar]
  15. Kristiansen H., Gad H. H., Eskildsen-Larsen S., Despres P., Hartmann R. 2011; The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J Interferon Cytokine Res 31:41–47 [View Article][PubMed]
    [Google Scholar]
  16. Luytjes W., Bredenbeek P. J., Noten A. F., Horzinek M. C., Spaan W. J. 1988; Sequence of mouse hepatitis virus A59 mRNA 2: indications for RNA recombination between coronaviruses and influenza C virus. Virology 166:415–422 [View Article][PubMed]
    [Google Scholar]
  17. Ogden K. M., Hu L., Jha B. K., Sankaran B., Weiss S. R., Silverman R. H., Patton J. T., Prasad B. V. 2015; Structural basis for 2′-5′-oligoadenylate binding and enzyme activity of a viral RNase L antagonist. J Virol 89:6633–6645 [View Article][PubMed]
    [Google Scholar]
  18. Otwinowski Z., Minor W. 1997; Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326 [View Article]
    [Google Scholar]
  19. Schindler C., Darnell J. E. Jr. 1995; Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621–652 [View Article][PubMed]
    [Google Scholar]
  20. Silverman R. H. 2007; Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81:12720–12729 [View Article][PubMed]
    [Google Scholar]
  21. Silverman R. H., Weiss S. R. 2014; Viral phosphodiesterases that antagonize double-stranded RNA signaling to RNase L by degrading 2-5A. J Interferon Cytokine Res 34:455–463 [View Article][PubMed]
    [Google Scholar]
  22. Stark G. R., Kerr I. M., Williams B. R., Silverman R. H., Schreiber R. D. 1998; How cells respond to interferons. Annu Rev Biochem 67:227–264 [View Article][PubMed]
    [Google Scholar]
  23. Thakur C. S., Xu Z., Wang Z., Novince Z., Silverman R. H. 2005; A convenient and sensitive fluorescence resonance energy transfer assay for RNase L and 2′,5′ oligoadenylates. Methods Mol Med 116:103–113[PubMed]
    [Google Scholar]
  24. Wang Q., Carmichael G. G. 2004; Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 68:432–452 [View Article][PubMed]
    [Google Scholar]
  25. Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A. D., Fouchier R. A. 2012; Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820 [View Article][PubMed]
    [Google Scholar]
  26. Zhang R., Jha B. K., Ogden K. M., Dong B., Zhao L., Elliott R., Patton J. T., Silverman R. H., Weiss S. R. 2013; Homologous 2′,5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proc Natl Acad Sci U S A 110:13114–13119 [View Article][PubMed]
    [Google Scholar]
  27. Zhao L., Rose K. M., Elliott R., Van Rooijen N., Weiss S. R. 2011; Cell-type-specific type I interferon antagonism influences organ tropism of murine coronavirus. J Virol 85:10058–10068 [View Article][PubMed]
    [Google Scholar]
  28. Zhao L., Jha B. K., Wu A., Elliott R., Ziebuhr J., Gorbalenya A. E., Silverman R. H., Weiss S. R. 2012; Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe 11:607–616 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000395
Loading
/content/journal/jgv/10.1099/jgv.0.000395
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed