1887

Abstract

Hepatitis C virus (HCV) infection has been shown to induce autophagy but the mechanisms underpinning this process remain to be elucidated. Induction of autophagy requires the class III phosphatidylinositol 3-kinase, Vps34, which produces phosphatidylinositol 3-phosphate (PI3P) within the endoplasmic reticulum (ER) membrane. This recruits proteins with PI3P binding domains such as the double-FYVE-containing protein 1 (DFCP1). DFCP1 generates cup–shaped protrusions from the ER membrane, termed omegasomes, which provide a platform for the production of autophagosomes. Here we present data demonstrating that both Vps34 and DFCP1 are required for HCV genome replication, in the context of both a subgenomic replicon and virus infection, but did not affect virus entry or initial translation. Using live cell fluorescence microscopy we demonstrated that early during HCV infection the nascent viral genome replication complexes (identified by using non-structural protein NS5A as a marker) transiently colocalize with DFCP1-positive punctae (omegasomes), before the two structures move apart from each other. This observation is reminiscent of the transient association of LC3 and DFCP1 during omegasome formation, and therefore we propose that omegasomes are utilized by HCV to generate the double-membrane vesicles which are the hallmark of HCV replication complexes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000387
2016-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/680.html?itemId=/content/journal/jgv/10.1099/jgv.0.000387&mimeType=html&fmt=ahah

References

  1. Ait-Goughoulte M., Kanda T., Meyer K., Ryerse J. S., Ray R. B., Ray R.. ( 2008;). Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol 82: 2241–2249 [CrossRef] [PubMed].
    [Google Scholar]
  2. Axe E. L., Walker S. A., Manifava M., Chandra P., Roderick H. L., Habermann A., Griffiths G., Ktistakis N. T.. ( 2008;). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182: 685–701 [CrossRef] [PubMed].
    [Google Scholar]
  3. Berger C., Romero-Brey I., Radujkovic D., Terreux R., Zayas M., D. Paul, Harak C., Hoppe S., Gao M., other authors. ( 2014;). Daclatasvir-like inhibitors of NS5A block early biogenesis of hepatitis C virus-induced membranous replication factories, independent of RNA replication. Gastroenterology 147: 1094–1105, e25 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bolte S., Cordelières F. P.. ( 2006;). A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224: 213–232 [CrossRef] [PubMed].
    [Google Scholar]
  5. Codogno P., Mehrpour M., Proikas-Cezanne T.. ( 2012;). Canonical and non-canonical autophagy: variations on a common theme of self-eating?. Nat Rev Mol Cell Biol 13: 7–12 [PubMed].
    [Google Scholar]
  6. Cottam E. M., Maier H. J., Manifava M., Vaux L. C., Chandra-Schoenfelder P., Gerner W., Britton P., Ktistakis N. T., Wileman T.. ( 2011;). Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy 7: 1335–1347 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dooley H. C., Razi M., Polson H. E., Girardin S. E., Wilson M. I., Tooze S. A.. ( 2014;). WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55: 238–252 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dreux M., Chisari F. V.. ( 2010;). Viruses and the autophagy machinery. Cell Cycle 9: 1295–1307 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dreux M., Gastaminza P., Wieland S. F., Chisari F. V.. ( 2009;). The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci U S A 106: 14046–14051 [CrossRef] [PubMed].
    [Google Scholar]
  10. Egger D., Wölk B., Gosert R., Bianchi L., Blum H. E., Moradpour D., Bienz K.. ( 2002;). Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76: 5974–5984 [CrossRef] [PubMed].
    [Google Scholar]
  11. Gallay P. A.. ( 2009;). Cyclophilin inhibitors. Clin Liver Dis 13: 403–417 [CrossRef] [PubMed].
    [Google Scholar]
  12. Gao M., Nettles R. E., Belema M., Snyder L. B., Nguyen V. N., Fridell R. A., Serrano-Wu M. H., Langley D. R., Sun J. H., other authors. ( 2010;). Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465: 96–100 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gosert R., Egger D., Lohmann V., Bartenschlager R., Blum H. E., Bienz K., Moradpour D.. ( 2003;). Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J Virol 77: 5487–5492 [CrossRef] [PubMed].
    [Google Scholar]
  14. Guévin C., Manna D., Bélanger C., Konan K. V., Mak P., Labonté P.. ( 2010;). Autophagy protein ATG5 interacts transiently with the hepatitis C virus RNA polymerase (NS5B) early during infection. Virology 405: 1–7 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., Oomori H., Noda T., Haraguchi T., other authors. ( 2013;). Autophagosomes form at ER-mitochondria contact sites. Nature 495: 389–393 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hayashi-Nishino M., Fujita N., Noda T., Yamaguchi A., Yoshimori T., Yamamoto A.. ( 2009;). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11: 1433–1437 [CrossRef] [PubMed].
    [Google Scholar]
  17. He Y., Nakao H., Tan S. L., Polyak S. J., Neddermann P., Vijaysri S., Jacobs B. L., Katze M. G.. ( 2002;). Subversion of cell signaling pathways by hepatitis C virus nonstructural 5A protein via interaction with Grb2 and P85 phosphatidylinositol 3-kinase. J Virol 76: 9207–9217 [CrossRef] [PubMed].
    [Google Scholar]
  18. Jones C. T., Murray C. L., Eastman D. K., Tassello J., Rice C. M.. ( 2007;). Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J Virol 81: 8374–8383 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lee Y. R., Lei H. Y., Liu M. T., Wang J. R., Chen S. H., Jiang-Shieh Y. F., Lin Y. S., Yeh T. M., Liu C. C., Liu H. S.. ( 2008;). Autophagic machinery activated by dengue virus enhances virus replication. Virology 374: 240–248 [CrossRef] [PubMed].
    [Google Scholar]
  20. Macdonald A., Crowder K., Street A., McCormick C., Saksela K., Harris M.. ( 2003;). The hepatitis C virus NS5A protein inhibits activating protein-1 function by perturbing Ras-ERK pathway signalling. J Biol Chem 278: 17775–17784 [CrossRef] [PubMed].
    [Google Scholar]
  21. Mohl B. P., Tedbury P. R., Griffin S., Harris M.. ( 2012;). Hepatitis C virus-induced autophagy is independent of the unfolded protein response. J Virol 86: 10724–10732 [CrossRef] [PubMed].
    [Google Scholar]
  22. Panyasrivanit M., Khakpoor A., Wikan N., Smith D. R.. ( 2009;). Co-localization of constituents of the dengue virus translation and replication machinery with amphisomes. J Gen Virol 90: 448–456 [CrossRef] [PubMed].
    [Google Scholar]
  23. Paul D., Hoppe S., Saher G., Krijnse-Locker J., Bartenschlager R.. ( 2013;). Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J Virol 87: 10612–10627 [CrossRef] [PubMed].
    [Google Scholar]
  24. Pietschmann T., Kaul A., Koutsoudakis G., Shavinskaya A., Kallis S., Steinmann E., Abid K., Negro F., Dreux M., other authors. ( 2006;). Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A 103: 7408–7413 [CrossRef] [PubMed].
    [Google Scholar]
  25. Ridley S. H., Ktistakis N., Davidson K., Anderson K. E., Manifava M., Ellson C. D., Lipp P., Bootman M., Coadwell J., other authors. ( 2001;). FENS-1 and DFCP1 are FYVE domain-containing proteins with distinct functions in the endosomal and Golgi compartments. J Cell Sci 114: 3991–4000 [PubMed].
    [Google Scholar]
  26. Romero-Brey I., Merz A., Chiramel A., Lee J. Y., Chlanda P., Haselman U., Santarella-Mellwig R., Habermann A., Hoppe S., other authors. ( 2012;). Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 8: e1003056 [CrossRef] [PubMed].
    [Google Scholar]
  27. Ross-Thriepland D., Amako Y., Harris M.. ( 2013;). The C terminus of NS5A domain II is a key determinant of hepatitis C virus genome replication, but is not required for virion assembly and release. J Gen Virol 94: 1009–1018 [CrossRef] [PubMed].
    [Google Scholar]
  28. Schaller T., Appel N., Koutsoudakis G., Kallis S., Lohmann V., Pietschmann T., Bartenschlager R.. ( 2007;). Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J Virol 81: 4591–4603 [CrossRef] [PubMed].
    [Google Scholar]
  29. Shrivastava S., Raychoudhuri A., Steele R., Ray R., Ray R. B.. ( 2011;). Knockdown of autophagy enhances the innate immune response in hepatitis C virus-infected hepatocytes. Hepatology 53: 406–414 [CrossRef] [PubMed].
    [Google Scholar]
  30. Simonsen A., Stenmark H.. ( 2008;). Self-eating from an ER-associated cup. J Cell Biol 182: 621–622 [CrossRef] [PubMed].
    [Google Scholar]
  31. Sir D., Chen W. L., Choi J., Wakita T., Yen T. S., Ou J. H.. ( 2008;). Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48: 1054–1061 [CrossRef] [PubMed].
    [Google Scholar]
  32. Sir D., Kuo C. F., Tian Y., Liu H. M., Huang E. J., Jung J. U., Machida K., Ou J. H.. ( 2012;). Replication of hepatitis C virus RNA on autophagosomal membranes. J Biol Chem 287: 18036–18043 [CrossRef] [PubMed].
    [Google Scholar]
  33. Street A., Macdonald A., Crowder K., Harris M.. ( 2004;). The hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. J Biol Chem 279: 12232–12241 [CrossRef] [PubMed].
    [Google Scholar]
  34. Su W. C., Chao T. C., Huang Y. L., Weng S. C., Jeng K. S., Lai M. M.. ( 2011;). Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol 85: 10561–10571 [CrossRef] [PubMed].
    [Google Scholar]
  35. Tanida I.. ( 2011;). Autophagy basics. Microbiol Immunol 55: 1–11 [CrossRef] [PubMed].
    [Google Scholar]
  36. Taylor M. P., Kirkegaard K.. ( 2007;). Modification of cellular autophagy protein LC3 by poliovirus. J Virol 81: 12543–12553 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H. G., other authors. ( 2005;). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11: 791–796 [CrossRef] [PubMed].
    [Google Scholar]
  38. Wang L., Tian Y., Ou J. H.. ( 2015;). HCV induces the expression of Rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog 11: e1004764 [CrossRef] [PubMed].
    [Google Scholar]
  39. Welsch S., Miller S., Romero-Brey I., Merz A., Bleck C. K., Walther P., Fuller S. D., Antony C., Krijnse-Locker J., Bartenschlager R.. ( 2009;). Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5: 365–375 [CrossRef] [PubMed].
    [Google Scholar]
  40. Wu Y. T., Tan H. L., Shui G., Bauvy C., Huang Q., Wenk M. R., Ong C. N., Codogno P., Shen H. M.. ( 2010;). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285: 10850–10861 [CrossRef] [PubMed].
    [Google Scholar]
  41. Wyles D. L., Kaihara K. A., Korba B. E., Schooley R. T., Beadle J. R., Hostetler K. Y.. ( 2009;). The octadecyloxyethyl ester of (S)-9-[3-hydroxy-2-(phosphonomethoxy) propyl]adenine is a potent and selective inhibitor of hepatitis C virus replication in genotype 1A, 1B, and 2A replicons. Antimicrob Agents Chemother 53: 2660–2662 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000387
Loading
/content/journal/jgv/10.1099/jgv.0.000387
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error