1887

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV), a positive-sense, ssRNA virus of the genus , is a devastating disease of swine worldwide. Key early targets of PRRSV infection in pigs include professional phagocytes in the lung, such as alveolar and interstitial macrophages and dendritic cells, the dysfunction of which is believed to be responsible for much of the associated mortality. In order to study the effect of virus infection on phagocyte function, the development of a robust, reproducible model would be advantageous. Given the limitations of current models, we set out to develop a porcine bone marrow-derived macrophage (PBMMΦ) cell model to study phagosomal maturation and function during PRRSV infection. Derivation of PBMMΦs from marrow using cultured L929 fibroblast supernatant produced a homogeneous population of cells that exhibited macrophage-like morphology and proficiency in Fc-receptor-mediated phagocytosis and phagosomal maturation. PBMMΦs were permissive to PRRSV infection, resulting in a productive infection that peaked at 24 h. Assessment of the effect of PRRSV infection on the properties of phagosomal maturation in PBMMΦs revealed a significant decrease in phagosomal proteolysis and lowered production of reactive oxygen species, but no change in PBMMΦ viability, phagocytosis or the ability of phagosomes to acidify. In this study, we present a new model to investigate PRRSV infection of phagocytes, which demonstrates a significant effect on phagosomal maturation with the associated implications on proper macrophage function. This model can also be used to study the effect on the phagosomal microenvironment of infection by other viruses targeting porcine macrophages.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000384
2016-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/669.html?itemId=/content/journal/jgv/10.1099/jgv.0.000384&mimeType=html&fmt=ahah

References

  1. Allan E. R., Tailor P., Balce D. R., Pirzadeh P., McKenna N. T., Renaux B., Warren A. L., Jirik F. R., Yates R. M.. ( 2014;). NADPH oxidase modifies patterns of MHC class II-restricted epitopic repertoires through redox control of antigen processing. J Immunol 192: 4989–5001 [CrossRef] [PubMed].
    [Google Scholar]
  2. Balce D. R., Li B., Allan E. R., Rybicka J. M., Krohn R. M., Yates R. M.. ( 2011;). Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. Blood 118: 4199–4208 [CrossRef] [PubMed].
    [Google Scholar]
  3. Balce D. R., Allan E. R., McKenna N., Yates R. M.. ( 2014;). γ-Interferon-inducible lysosomal thiol reductase (GILT) maintains phagosomal proteolysis in alternatively activated macrophages. J Biol Chem 289: 31891–31904 [CrossRef] [PubMed].
    [Google Scholar]
  4. Beyer J., Fichtner D., Schirrmeier H., Polster U., Weiland E., Wege H.. ( 2000;). Porcine reproductive and respiratory syndrome virus (PRRSV): kinetics of infection in lymphatic organs and lung. J Vet Med B Infect Dis Vet Public Health 47: 9–25 [CrossRef] [PubMed].
    [Google Scholar]
  5. Blumenthal R. L., Campbell D. E., Hwang P., DeKruyff R. H., Frankel L. R., Umetsu D. T.. ( 2001;). Human alveolar macrophages induce functional inactivation in antigen-specific CD4 T cells. J Allergy Clin Immunol 107: 258–264 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bodenheimer H., Jr., Charland C., Leith J.. ( 1988;). Alteration of rat Kupffer cell function following mitomycin-C administration. J Leukoc Biol 43: 265–270 [PubMed].
    [Google Scholar]
  7. Cho J. G., Dee S. A.. ( 2006;). Porcine reproductive and respiratory syndrome virus. Theriogenology 66: 655–662 [CrossRef] [PubMed].
    [Google Scholar]
  8. Costers S., Lefebvre D. J., Delputte P. L., Nauwynck H. J.. ( 2008;). Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Arch Virol 153: 1453–1465 [CrossRef] [PubMed].
    [Google Scholar]
  9. Drew T. W.. ( 2000;). A review of evidence for immunosuppression due to porcine reproductive and respiratory syndrome virus. Vet Res 31: 27–39 [PubMed].
    [Google Scholar]
  10. du Manoir J. M., Albright B. N., Stevenson G., Thompson S. H., Mitchell G. B., Clark M. E., Caswell J. L.. ( 2002;). Variability of neutrophil and pulmonary alveolar macrophage function in swine. Vet Immunol Immunopathol 89: 175–186 [CrossRef] [PubMed].
    [Google Scholar]
  11. Duan X., Nauwynck H. J., Pensaert M. B.. ( 1997a;). Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch Virol 142: 2483–2497 [CrossRef] [PubMed].
    [Google Scholar]
  12. Duan X., Nauwynck H. J., Pensaert M. B.. ( 1997b;). Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Vet Microbiol 56: 9–19 [CrossRef] [PubMed].
    [Google Scholar]
  13. Englen M. D., Valdez Y. E., Lehnert N. M., Lehnert B. E.. ( 1995;). Granulocyte/macrophage colony-stimulating factor is expressed and secreted in cultures of murine L929 cells. J Immunol Methods 184: 281–283 [CrossRef] [PubMed].
    [Google Scholar]
  14. Fairn G. D., Grinstein S.. ( 2012;). How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33: 397–405 [CrossRef] [PubMed].
    [Google Scholar]
  15. Flannagan R. S., Jaumouillé V., Grinstein S.. ( 2012;). The cell biology of phagocytosis. Annu Rev Pathol 7: 61–98 [CrossRef] [PubMed].
    [Google Scholar]
  16. Halbur P. G., Miller L. D., Paul P. S., Meng X. J., Huffman E. L., Andrews J. J.. ( 1995;). Immunohistochemical identification of porcine reproductive and respiratory syndrome virus (PRRSV) antigen in the heart and lymphoid system of three-week-old colostrum-deprived pigs. Vet Pathol 32: 200–204 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hoidal J. R., Schmeling D., Peterson P. K.. ( 1981;). Phagocytosis, bacterial killing, and metabolism by purified human lung phagocytes. J Infect Dis 144: 61–71 [CrossRef] [PubMed].
    [Google Scholar]
  18. Holt P. G.. ( 1978;). Inhibitory activity of unstimulated alveolar macrophages on T-lymphocyte blastogenic response. Am Rev Respir Dis 118: 791–793 [CrossRef] [PubMed].
    [Google Scholar]
  19. Holtkamp D. J., Kliebenstein J. B., Neumann E. J., Zimmerman J. J., Rotto H. F., Yoder T. K., Wang C., Yeske P. E., Mowrer C. L., Haley C. A.. ( 2013;). Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. Journal of Swine Health and Production 21: 72–84.
    [Google Scholar]
  20. Jung T., Choi C., Chae C.. ( 2002;). Localization of swine influenza virus in naturally infected pigs. Vet Pathol 39: 10–16 [CrossRef] [PubMed].
    [Google Scholar]
  21. Karniychuk U. U., Nauwynck H. J.. ( 2013;). Pathogenesis and prevention of placental and transplacental porcine reproductive and respiratory syndrome virus infection. Vet Res 44: 95 [CrossRef] [PubMed].
    [Google Scholar]
  22. Karniychuk U. U., Saha D., Geldhof M., Vanhee M., Cornillie P., Van den Broeck W., Nauwynck H. J.. ( 2011;). Porcine reproductive and respiratory syndrome virus (PRRSV) causes apoptosis during its replication in fetal implantation sites. Microb Pathog 51: 194–202 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lambrecht B. N.. ( 2006;). Alveolar macrophage in the driver's seat. Immunity 24: 366–368 [CrossRef] [PubMed].
    [Google Scholar]
  24. Lawson S. R., Rossow K. D., Collins J. E., Benfield D. A., Rowland R. R.. ( 1997;). Porcine reproductive and respiratory syndrome virus infection of gnotobiotic pigs: sites of virus replication and co-localization with MAC-387 staining at 21 days post-infection. Virus Res 51: 105–113 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lee Y. J., Park C. K., Nam E., Kim S. H., Lee O. S., Lee S., Lee C.. ( 2010;). Generation of a porcine alveolar macrophage cell line for the growth of porcine reproductive and respiratory syndrome virus. J Virol Methods 163: 410–415 [CrossRef] [PubMed].
    [Google Scholar]
  26. McNeilly F., Allan G. M., Foster J. C., Adair B. M., McNulty M. S., Pollock J.. ( 1996;). Effect of porcine circovirus infection on porcine alveolar macrophage function. Vet Immunol Immunopathol 49: 295–306 [CrossRef] [PubMed].
    [Google Scholar]
  27. Mercer J., Greber U. F.. ( 2013;). Virus interactions with endocytic pathways in macrophages and dendritic cells. Trends Microbiol 21: 380–388 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nissler K., Strubel W., Kreusch S., Rommerskirch W., Weber E., Wiederanders B.. ( 1999;). The half-life of human procathepsin S. Eur J Biochem 263: 717–725 [CrossRef] [PubMed].
    [Google Scholar]
  29. Opriessnig T., Giménez-Lirola L. G., Halbur P. G.. ( 2011;). Polymicrobial respiratory disease in pigs. Anim Health Res Rev 12: 133–148 [CrossRef] [PubMed].
    [Google Scholar]
  30. Rohde K., Yates R. M., Purdy G. E., Russell D. G.. ( 2007;). Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 219: 37–54 [CrossRef] [PubMed].
    [Google Scholar]
  31. Rowland R. R.. ( 2010;). The interaction between PRRSV and the late gestation pig fetus. Virus Res 154: 114–122 [CrossRef] [PubMed].
    [Google Scholar]
  32. Russell D. G., Vanderven B. C., Glennie S., Mwandumba H., Heyderman R. S.. ( 2009;). The macrophage marches on its phagosome: dynamic assays of phagosome function. Nat Rev Immunol 9: 594–600 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rybicka J. M., Balce D. R., Khan M. F., Krohn R. M., Yates R. M.. ( 2010;). NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the lumenal redox environment of phagosomes. Proc Natl Acad Sci U S A 107: 10496–10501 [CrossRef] [PubMed].
    [Google Scholar]
  34. Rybicka J. M., Balce D. R., Chaudhuri S., Allan E. R., Yates R. M.. ( 2012;). Phagosomal proteolysis in dendritic cells is modulated by NADPH oxidase in a pH-independent manner. EMBO J 31: 932–944 [CrossRef] [PubMed].
    [Google Scholar]
  35. Thanawongnuwech R., Thacker E. L., Halbur P. G.. ( 1997;). Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs): in vitro comparisons with pulmonary alveolar macrophages (PAMs). Vet Immunol Immunopathol 59: 323–335 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thanawongnuwech R., Halbur P. G., Thacker E. L.. ( 2000;). The role of pulmonary intravascular macrophages in porcine reproductive and respiratory syndrome virus infection. Anim Health Res Rev 1: 95–102 [CrossRef] [PubMed].
    [Google Scholar]
  37. Turk B., Turk D., Salvesen G. S.. ( 2002;). Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. Curr Pharm Des 8: 1623–1637 [CrossRef] [PubMed].
    [Google Scholar]
  38. Van Breedam W., Delputte P. L., Van Gorp H., Misinzo G., Vanderheijden N., Duan X., Nauwynck H. J.. ( 2010;). Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol 91: 1659–1667 [CrossRef] [PubMed].
    [Google Scholar]
  39. Weinberg D. S., Unanue E. R.. ( 1981;). Antigen-presenting function of alveolar macrophages: uptake and presentation of Listeria monocytogenes. J Immunol 126: 794–799 [PubMed].
    [Google Scholar]
  40. Yates R. M.. ( 2013;). Redox considerations in the phagosome: current concepts, controversies, and future challenges. Antioxid Redox Signal 18: 628–629 [CrossRef] [PubMed].
    [Google Scholar]
  41. Yates R. M., Russell D. G.. ( 2008;). Real-time spectrofluorometric assays for the lumenal environment of the maturing phagosome. Methods Mol Biol 445: 311–325 [CrossRef] [PubMed].
    [Google Scholar]
  42. Yates R. M., Hermetter A., Russell D. G.. ( 2005;). The kinetics of phagosome maturation as a function of phagosome/lysosome fusion and acquisition of hydrolytic activity. Traffic 6: 413–420 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yates R. M., Hermetter A., Taylor G. A., Russell D. G.. ( 2007;). Macrophage activation downregulates the degradative capacity of the phagosome. Traffic 8: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
  44. Yates R. M., Hermetter A., Russell D. G.. ( 2009;). Recording phagosome maturation through the real-time, spectrofluorometric measurement of hydrolytic activities. Methods Mol Biol 531: 157–171 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000384
Loading
/content/journal/jgv/10.1099/jgv.0.000384
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error