1887

Abstract

It has been demonstrated that tumour necrosis factor receptor (TNFR) homologues encoded by viruses are usually involved in virus immune evasion by regulating the host immune response or mediating apoptotic cell death. Here, a novel TNFR-like protein encoded by Singapore grouper iridovirus (SGIV VP51) was cloned and characterized. Amino acid analysis showed that VP51 contained three cysteine-rich domains (CRDs) and a transmembrane domain at its C terminus. The expression of VP51 enhanced cell proliferation, and affected cell cycle progression via altering the G1/S transition. Furthermore, VP51 overexpression improved cell viability during SGIV infection via inhibiting virus-induced apoptosis, evidenced by the reduction of apoptotic bodies and the decrease of caspase-3 activation. In addition, overexpression of VP51 increased viral titre and the expression of viral structural protein gene MCP and cell proliferation promoting gene ICP-18. In contrast, the expression of the viral apoptosis inducing gene, LITAF, was significantly decreased. Although all three CRDs were essential for the action of VP51, CRD2 and CRD3 exerted more crucial roles on virus-induced apoptosis, viral gene transcription and virus production, while CRD1 was more crucial for cell proliferation. Together, SGIV TNFR-like products not only affected cell cycle progression and enhanced cell growth by increasing the expression of the virus encoded cell proliferation gene, but also inhibited virus-induced apoptotic cell death by decreasing the expression of the viral apoptosis inducing gene. Our results provided new insights into understanding the underlying mechanism by which iridovirus regulated the apoptotic pathway to complete its life cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000379
2016-03-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/756.html?itemId=/content/journal/jgv/10.1099/jgv.0.000379&mimeType=html&fmt=ahah

References

  1. Aggarwal B. B. 2003; Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756 [View Article][PubMed]
    [Google Scholar]
  2. Alejo A., Pontejo S. M., Alcami A. 2011; Poxviral TNFRs: properties and role in viral pathogenesis. Adv Exp Med Biol 691:203–210 [View Article][PubMed]
    [Google Scholar]
  3. Benedict C. A., Banks T. A., Ware C. F. 2003; Death and survival: viral regulation of TNF signaling pathways. Curr Opin Immunol 15:59–65 [View Article][PubMed]
    [Google Scholar]
  4. Cheung T. C., Humphreys I. R., Potter K. G., Norris P. S., Shumway H. M., Tran B. R., Patterson G., Jean-Jacques R., Yoon M., other authors. 2005; Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc Natl Acad Sci U S A 102:13218–13223 [View Article][PubMed]
    [Google Scholar]
  5. Cuconati A., White E. 2002; Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 16:2465–2478 [View Article][PubMed]
    [Google Scholar]
  6. Emmett S. R., Dove B., Mahoney L., Wurm T., Hiscox J. A. 2005; The cell cycle and virus infection. Methods Mol Biol 296:197–218[PubMed]
    [Google Scholar]
  7. Epperson M. L., Lee C. A., Fremont D. H. 2012; Subversion of cytokine networks by virally encoded decoy receptors. Immunol Rev 250:199–215 [View Article][PubMed]
    [Google Scholar]
  8. Gelgor A., Kalt I., Bergson S., Brulois K. F., Jung J. U., Sarid R. 2015; Viral Bcl-2 encoded by the Kaposi's sarcoma-associated herpesvirus is vital for virus reactivation. J Virol 89:5298–5307 [View Article][PubMed]
    [Google Scholar]
  9. Graham S. C., Bahar M. W., Abrescia N. G., Smith G. L., Stuart D. I., Grimes J. M. 2007; Structure of CrmE, a virus-encoded tumour necrosis factor receptor. J Mol Biol 372:660–671 [View Article][PubMed]
    [Google Scholar]
  10. Gray M. J., Miller D. L., Hoverman J. T. 2009; Ecology and pathology of amphibian ranaviruses. Dis Aquat Organ 87:243–266 [View Article][PubMed]
    [Google Scholar]
  11. Guo Q., Qian L., Guo L., Shi M., Chen C., Lv X., Yu M., Hu M., Jiang G., Guo N. 2010; Transactivators Zta and Rta of Epstein-Barr virus promote G0/G1 to S transition in Raji cells: a novel relationship between lytic virus and cell cycle. Mol Immunol 47:1783–1792 [View Article][PubMed]
    [Google Scholar]
  12. Hong J. R., Gong H. Y., Wu J. L. 2002; IPNV VP5, a novel anti-apoptosis gene of the Bcl-2 family, regulates Mcl-1 and viral protein expression. Virology 295:217–229 [View Article][PubMed]
    [Google Scholar]
  13. Huang X., Huang Y., Gong J., Yan Y., Qin Q. 2008; Identification and characterization of a putative lipopolysaccharide-induced TNF-alpha factor (LITAF) homolog from Singapore grouper iridovirus. Biochem Biophys Res Commun 373:140–145 [View Article][PubMed]
    [Google Scholar]
  14. Huang X. H., Huang Y. H., Sun J. J., Han X., Qin Q. W. 2009; Characterization of two grouper Epinephelus akaara cell lines: application to studies of Singapore grouper iridovirus (SGIV) propagation and virus–host interaction. Aquaculture 292:172–179 [View Article]
    [Google Scholar]
  15. Huang X., Huang Y., Ouyang Z., Xu L., Yan Y., Cui H., Han X., Qin Q. 2011a; Singapore grouper iridovirus, a large DNA virus, induces nonapoptotic cell death by a cell type dependent fashion and evokes ERK signaling. Apoptosis 16:831–845 [View Article][PubMed]
    [Google Scholar]
  16. Huang Y., Huang X., Cai J., Ye F., Qin Q. 2011b; Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis. Apoptosis 16:581–593 [View Article][PubMed]
    [Google Scholar]
  17. Huang X., Huang Y., Cai J., Wei S., Gao R., Qin Q. 2013; Identification and characterization of a tumor necrosis factor receptor like protein encoded by Singapore grouper iridovirus. Virus Res 178:340–348 [View Article][PubMed]
    [Google Scholar]
  18. Lares A. P., Tu C. C., Spencer J. V. 2013; The human cytomegalovirus US27 gene product enhances cell proliferation and alters cellular gene expression. Virus Res 176:312–320 [View Article][PubMed]
    [Google Scholar]
  19. Lin P. W., Huang Y. J., John J. A., Chang Y. N., Yuan C. H., Chen W. Y., Yeh C. H., Shen S. T., Lin F. P., other authors. 2008; Iridovirus Bcl-2 protein inhibits apoptosis in the early stage of viral infection. Apoptosis 13:165–176 [View Article][PubMed]
    [Google Scholar]
  20. Meseda C. A., Arrand J. R., Mackett M. 2000; Herpesvirus papio encodes a functional homologue of the Epstein-Barr virus apoptosis suppressor, BHRF1. J Gen Virol 81:1801–1805 [View Article][PubMed]
    [Google Scholar]
  21. Nascimento R., Costa H., Parkhouse R. M. 2012; Virus manipulation of cell cycle. Protoplasma 249:519–528 [View Article][PubMed]
    [Google Scholar]
  22. Okamoto T., Campbell S., Mehta N., Thibault J., Colman P. M., Barry M., Huang D. C., Kvansakul M. 2012; Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins. J Virol 86:11501–11511 [View Article][PubMed]
    [Google Scholar]
  23. Pontejo S. M., Alejo A., Alcami A. 2015a; Comparative biochemical and functional analysis of viral and human secreted tumor necrosis factor (TNF) decoy receptors. J Biol Chem 290:15973–15984 [View Article][PubMed]
    [Google Scholar]
  24. Pontejo S. M., Alejo A., Alcami A. 2015b; Poxvirus-encoded TNF decoy receptors inhibit the biological activity of transmembrane TNF. J Gen Virol 96:3118–3123 [View Article][PubMed]
    [Google Scholar]
  25. Pontejo S. M., Sánchez C., Martín R., Mulero V., Alcami A., Alejo A. 2013; An orphan viral TNF receptor superfamily member identified in lymphocystis disease virus. Virology Journal 10:188 [CrossRef]
    [Google Scholar]
  26. Poole E., King C. A., Sinclair J. H., Alcami A. 2006; The UL144 gene product of human cytomegalovirus activates NFκB via a TRAF6-dependent mechanism. EMBO J 25:4390–4399 [View Article][PubMed]
    [Google Scholar]
  27. Qin Q. W., Lam T. J., Sin Y. M., Shen H., Chang S. F., Ngoh G. H., Chen C. L. 2001; Electron microscopic observations of a marine fish iridovirus isolated from brown-spotted grouper. Epinephelus tauvina. J Virol Methods 98:17–24 [View Article][PubMed]
    [Google Scholar]
  28. Qin Q. W., Chang S. F., Ngoh-Lim G. H., Gibson-Kueh S., Shi C., Lam T. J. 2003; Characterization of a novel ranavirus isolated from grouper Epinephelus tauvina . Dis Aquat Organ 53:1–9 [View Article][PubMed]
    [Google Scholar]
  29. Rahman M. M., McFadden G. 2006; Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog 2:e4 [View Article][PubMed]
    [Google Scholar]
  30. Reed L. J., Muench H. 1938; A simple method of estimating 50 % endpoints. Am J Epidemiol 27:493–497
    [Google Scholar]
  31. Ring B. A., Ferreira Lacerda A., Drummond D. J., Wangen C., Eaton H. E., Brunetti C. R. 2013; Frog virus 3 open reading frame 97R localizes to the endoplasmic reticulum and induces nuclear invaginations. J Virol 87:9199–9207 [View Article][PubMed]
    [Google Scholar]
  32. Roulston A., Marcellus R. C., Branton P. E. 1999; Viruses and apoptosis. Annu Rev Microbiol 53:577–628 [View Article][PubMed]
    [Google Scholar]
  33. Saraiva M., Alcami A. 2001; CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J Virol 75:226–233 [View Article][PubMed]
    [Google Scholar]
  34. Saraiva M., Smith P., Fallon P. G., Alcami A. 2002; Inhibition of type 1 cytokine-mediated inflammation by a soluble CD30 homologue encoded by ectromelia (mousepox) virus. J Exp Med 196:829–839 [View Article][PubMed]
    [Google Scholar]
  35. Sedger L. M., Osvath S. R., Xu X. M., Li G., Chan F. K., Barrett J. W., McFadden G. 2006; Poxvirus tumor necrosis factor receptor (TNFR)-like T2 proteins contain a conserved preligand assembly domain that inhibits cellular TNFR1-induced cell death. J Virol 80:9300–9309 [View Article][PubMed]
    [Google Scholar]
  36. Smith C. A., Hu F. Q., Smith T. D., Richards C. L., Smolak P., Goodwin R. G., Pickup D. J. 1996; Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LT alpha. Virology 223:132–147 [View Article][PubMed]
    [Google Scholar]
  37. Song W. J., Qin Q. W., Qiu J., Huang C. H., Wang F., Hew C. L. 2004; Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. J Virol 78:12576–12590 [View Article][PubMed]
    [Google Scholar]
  38. Xia L., Cao J., Huang X., Qin Q. 2009; Characterization of Singapore grouper iridovirus (SGIV) ORF086R, a putative homolog of ICP18 involved in cell growth control and virus replication. Arch Virol 154:1409–1416 [View Article][PubMed]
    [Google Scholar]
  39. Yan Y., Cui H., Guo C., Li J., Huang X., Wei J., Qin Q. 2013; An insulin-like growth factor homologue of Singapore grouper iridovirus modulates cell proliferation, apoptosis and enhances viral replication. J Gen Virol 94:2759–2770 [View Article][PubMed]
    [Google Scholar]
  40. Yu H., Bauer B., Lipke G. K., Phillips R. L., Van Zant G. 1993; Apoptosis and hematopoiesis in murine fetal liver. Blood 81:373–384[PubMed]
    [Google Scholar]
  41. Zhang Q., Gui J. F. 2015; Virus genomes and virus–host interactions in aquaculture animals. Sci China Life Sci 58:156–169 [View Article][PubMed]
    [Google Scholar]
  42. Zhang Q. Y., Xiao F., Xie J., Li Z. Q., Gui J. F. 2004; Complete genome sequence of lymphocystis disease virus isolated from China. J Virol 78:6982–6994 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000379
Loading
/content/journal/jgv/10.1099/jgv.0.000379
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error