1887

Abstract

Classical swine fever is a viral disease of pigs that carries tremendous socio-economic impact. In outbreak situations, genetic typing is carried out for the purpose of molecular epidemiology in both domestic pigs and wild boar. These analyses are usually based on harmonized partial sequences. However, for high-resolution analyses towards the understanding of genetic variability and virus evolution, full-genome sequences are more appropriate. In this study, a unique set of representative virus strains was investigated that was collected during an outbreak in French free-ranging wild boar in the Vosges-du-Nord mountains between 2003 and 2007. Comparative sequence and evolutionary analyses of the nearly full-length sequences showed only slow evolution of classical swine fever virus strains over the years and no impact of vaccination on mutation rates. However, substitution rates varied amongst protein genes; furthermore, a spatial and temporal pattern could be observed whereby two separate clusters were formed that coincided with physical barriers.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000376
2016-03-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/639.html?itemId=/content/journal/jgv/10.1099/jgv.0.000376&mimeType=html&fmt=ahah

References

  1. Armengol E., Wiesmüller K. H., Wienhold D., Büttner M., Pfaff E., Jung G., Saalmüller A.. 2002; Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J Gen Virol83:551–560 [CrossRef][PubMed]
    [Google Scholar]
  2. Artois M., Depner K. R., Guberti V., Hars J., Rossi S., Rutili D.. 2002; Classical swine fever (hog cholera) in wild boar in Europe. Rev Sci Tech21:287–303[PubMed]
    [Google Scholar]
  3. Becker N., Jöst H., Ziegler U., Eiden M., Höper D., Emmerich P., Fichet-Calvet E., Ehichioya D. U., Czajka C., other authors. 2012; Epizootic emergence of Usutu virus in wild and captive birds in Germany. PLoS One7:e32604 [CrossRef][PubMed]
    [Google Scholar]
  4. Beer M., Goller K. V., Staubach C., Blome S.. 2015; Genetic variability and distribution of Classical swine fever virus. Anim Health Res Rev16:33–39 [CrossRef][PubMed]
    [Google Scholar]
  5. Calenge C., Rossi S.. 2014; Bayesian modelling of hunting data may improve the understanding of host–parasite systems: wild boar diseases and vaccination as an example. J Theor Biol343:32–43 [CrossRef][PubMed]
    [Google Scholar]
  6. Djikeng A., Spiro D.. 2009; Advancing full length genome sequencing for human RNA viral pathogens. Future Virol4:47–53 [CrossRef][PubMed]
    [Google Scholar]
  7. Drummond A. J., Suchard M. A., Xie D., Rambaut A.. 2012; Bayesian phylogenetics with BEAUti and the beast 1.7. Mol Biol Evol29:1969–1973 [CrossRef][PubMed]
    [Google Scholar]
  8. Edwards S., Fukusho A., Lefèvre P. C., Lipowski A., Pejsak Z., Roehe P., Westergaard J.. 2000; Classical swine fever: the global situation. Vet Microbiol73:103–119 [CrossRef][PubMed]
    [Google Scholar]
  9. Fritzemeier J., Teuffert J., Greiser-Wilke I., Staubach C., Schlüter H., Moennig V.. 2000; Epidemiology of classical swine fever in Germany in the 1990s. Vet Microbiol77:29–41 [CrossRef][PubMed]
    [Google Scholar]
  10. Greiser-Wilke I., Zimmermann B., Fritzemeier J., Floegel G., Moennig V.. 2000; Structure and presentation of a World Wide Web database of CSF virus isolates held at the EU Reference Laboratory. Vet Microbiol73:131–136 [CrossRef][PubMed]
    [Google Scholar]
  11. Greiser-Wilke I., Dreier S., Haas L., Zimmermann B.. 2006; [Genetic typing of classical swine fever viruses –a review]. Dtsch Tierarztl Wochenschr113:134–138 (in German)[PubMed]
    [Google Scholar]
  12. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  13. Jenkins G. M., Rambaut A., Pybus O. G., Holmes E. C.. 2002; Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol54:156–165 [CrossRef][PubMed]
    [Google Scholar]
  14. Ji W., Niu D. D., Si H. L., Ding N. Z., He C. Q.. 2014; Vaccination influences the evolution of classical swine fever virus. Infect Genet Evol25:69–77 [CrossRef][PubMed]
    [Google Scholar]
  15. Laddomada A.. 2000; Incidence and control of CSF in wild boar in Europe. Vet Microbiol73:121–130 [CrossRef][PubMed]
    [Google Scholar]
  16. Leifer I., Hoffmann B., Höper D., Bruun Rasmussen T., Blome S., Strebelow G., Höreth-Böntgen D., Staubach C., Beer M.. 2010; Molecular epidemiology of current classical swine fever virus isolates of wild boar in Germany. J Gen Virol91:2687–2697 [CrossRef][PubMed]
    [Google Scholar]
  17. Meyers G., Thiel H. J.. 1996; Molecular characterization of pestiviruses. Adv Virus Res47:53–118 [CrossRef][PubMed]
    [Google Scholar]
  18. Paton D. J., McGoldrick A., Greiser-Wilke I., Parchariyanon S., Song J. Y., Liou P. P., Stadejek T., Lowings J. P., Björklund H., Belák S.. 2000; Genetic typing of classical swine fever virus. Vet Microbiol73:137–157 [CrossRef][PubMed]
    [Google Scholar]
  19. Pol F., Rossi S., Mesplède A., Kuntz-Simon G., Le Potier M. F.. 2008; Two outbreaks of classical swine fever in wild boar in France. Vet Rec162:811–816 [CrossRef][PubMed]
    [Google Scholar]
  20. Postel A., Schmeiser S., Bernau J., Meindl-Boehmer A., Pridotkas G., Dirbakova Z., Mojzis M., Becher P.. 2012; Improved strategy for phylogenetic analysis of classical swine fever virus based on full-length E2 encoding sequences. Vet Res43:50 [CrossRef][PubMed]
    [Google Scholar]
  21. Postel A., Schmeiser S., Perera C. L., Rodríguez L. J., Frias-Lepoureau M. T., Becher P.. 2013; Classical swine fever virus isolates from Cuba form a new subgenotype 1.4.Vet Microbiol161:334–338 [CrossRef][PubMed]
    [Google Scholar]
  22. Rossi S., Pol F., Forot B., Masse-Provin N., Rigaux S., Bronner A., Le Potier M. F.. 2010; Preventive vaccination contributes to control classical swine fever in wild boar (Sus scrofa sp.). Vet Microbiol142:99–107 [CrossRef][PubMed]
    [Google Scholar]
  23. Rümenapf T., Unger G., Strauss J. H., Thiel H. J.. 1993; Processing of the envelope glycoproteins of pestiviruses. J Virol67:3288–3294[PubMed]
    [Google Scholar]
  24. Simon G., Le Dimna M., Le Potier M. F., Pol F.. 2013; Molecular tracing of classical swine fever viruses isolated from wild boars and pigs in France from 2002 to 2011. Vet Microbiol166:631–638 [CrossRef][PubMed]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  26. Tautz N., Elbers K., Stoll D., Meyers G., Thiel H. J.. 1997; Serine protease of pestiviruses: determination of cleavage sites. J Virol71:5415–5422[PubMed]
    [Google Scholar]
  27. Thiel H. J., Stark R., Weiland E., Rümenapf T., Meyers G.. 1991; Hog cholera virus: molecular composition of virions from a pestivirus. J Virol65:4705–4712[PubMed]
    [Google Scholar]
  28. Zhang H., Wang Y. H., Wu Z. J., Cui Y. D.. 2013; Molecular evolutionary analysis of classical swine fever virus. Isr J Vet Med68:43–47
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000376
Loading
/content/journal/jgv/10.1099/jgv.0.000376
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error