1887

Abstract

Tetherin (BST-2/CD317/HM1.24) is an antiviral membrane protein that prevents the release of enveloped viruses from the cell surface. We found that the growth of human parainfluenza virus type 2 (hPIV-2), but not that of V protein-deficient recombinant hPIV-2, was inhibited by tetherin. V protein immunoprecipitates with tetherin, and this interaction requires its C-terminal Trp residues. The glycosyl phosphatidylinositol attachment signal of tetherin, but not its cytoplasmic tail, was necessary for its binding with V. The distribution of the V protein clearly changed when co-expressed with tetherin in plasmid-transfected cells. hPIV-2 infection of HeLa cells reduced cell surface tetherin without affecting total cellular tetherin. This reduction also occurred in HeLa cells constitutively expressing V, whereas mutated V protein did not affect the cell surface tetherin. Our results suggest that hPIV-2 V protein antagonizes tetherin by binding it and reducing its presence at the cell surface.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000373
2016-03-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/561.html?itemId=/content/journal/jgv/10.1099/jgv.0.000373&mimeType=html&fmt=ahah

References

  1. Andrejeva J., Poole E., Young D. F., Goodbourn S., Randall R. E.. 2002; The p127 subunit (DDB1) of the UV-DNA damage repair binding protein is essential for the targeted degradation of STAT1 by the V protein of the paramyxovirus simian virus 5. J Virol76:11379–11386 [CrossRef][PubMed]
    [Google Scholar]
  2. Andrejeva J., Childs K. S., Young D. F., Carlos T. S., Stock N., Goodbourn S., Randall R. E.. 2004; The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc Natl Acad Sci U S A101:17264–17269 [CrossRef][PubMed]
    [Google Scholar]
  3. Andrew A. J., Kao S., Strebel K.. 2011; C-terminal hydrophobic region in human bone marrow stromal cell antigen 2 (BST-2)/tetherin protein functions as second transmembrane motif. J Biol Chem286:39967–39981 [CrossRef][PubMed]
    [Google Scholar]
  4. Bampi C., Rasga L., Roux L.. 2013; Antagonism to human BST-2/tetherin by Sendai virus glycoproteins. J Gen Virol94:1211–1219 [CrossRef][PubMed]
    [Google Scholar]
  5. Blasius A. L., Giurisato E., Cella M., Schreiber R. D., Shaw A. S., Colonna M.. 2006; Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol177:3260–3265 [CrossRef][PubMed]
    [Google Scholar]
  6. Cao W., Bover L., Cho M., Wen X., Hanabuchi S., Bao M., Rosen D. B., Wang Y. H., Shaw J. L., other authors. 2009; Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J Exp Med206:1603–1614 [CrossRef][PubMed]
    [Google Scholar]
  7. Childs K., Stock N., Ross C., Andrejeva J., Hilton L., Skinner M., Randall R., Goodbourn S.. 2007; mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology359:190–200 [CrossRef][PubMed]
    [Google Scholar]
  8. Childs K. S., Andrejeva J., Randall R. E., Goodbourn S.. 2009; Mechanism of mda-5 inhibition by paramyxovirus V proteins. J Virol83:1465–1473 [CrossRef][PubMed]
    [Google Scholar]
  9. Childs K., Randall R., Goodbourn S.. 2012; Paramyxovirus V proteins interact with the RNA helicase LGP2 to inhibit RIG-I-dependent interferon induction. J Virol86:3411–3421 [CrossRef][PubMed]
    [Google Scholar]
  10. Didcock L., Young D. F., Goodbourn S., Randall R. E.. 1999; The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol73:9928–9933[PubMed]
    [Google Scholar]
  11. Galão R. P., Le Tortorec A., Pickering S., Kueck T., Neil S. J.. 2012; Innate sensing of HIV-1 assembly by tetherin induces NFκB-dependent proinflammatory responses. Cell Host Microbe12:633–644 [CrossRef][PubMed]
    [Google Scholar]
  12. Goto T., Kennel S. J., Abe M., Takishita M., Kosaka M., Solomon A., Saito S.. 1994; A novel membrane antigen selectively expressed on terminally differentiated human B cells. Blood84:1922–1930[PubMed]
    [Google Scholar]
  13. Huang Z., Krishnamurthy S., Panda A., Samal S. K.. 2003; Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol77:8676–8685 [CrossRef][PubMed]
    [Google Scholar]
  14. Ishikawa J., Kaisho T., Tomizawa H., Lee B. O., Kobune Y., Inazawa J., Oritani K., Itoh M., Ochi T., other authors. 1995; Molecular cloning and chromosomal mapping of a bone marrow stromal cell surface gene, BST2, that may be involved in pre-B-cell growth. Genomics26:527–534 [CrossRef][PubMed]
    [Google Scholar]
  15. Jia B., Serra-Moreno R., Neidermyer W., Rahmberg A., Mackey J., Fofana I. B., Johnson W. E., Westmoreland S., Evans D. T.. 2009; Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog5:e1000429 [CrossRef][PubMed]
    [Google Scholar]
  16. Jouvenet N., Neil S. J., Zhadina M., Zang T., Kratovac Z., Lee Y., McNatt M., Hatziioannou T., Bieniasz P. D.. 2009; Broad-spectrum inhibition of retroviral and filoviral particle release by tetherin. J Virol83:1837–1844 [CrossRef][PubMed]
    [Google Scholar]
  17. Kaletsky R. L., Francica J. R., Agrawal-Gamse C., Bates P.. 2009; Tetherin-mediated restriction of filovirus budding is antagonized by the Ebola glycoprotein. Proc Natl Acad Sci U S A106:2886–2891 [CrossRef][PubMed]
    [Google Scholar]
  18. Kinoshita T., Ohishi K., Takeda J.. 1997; GPI-anchor synthesis in mammalian cells: genes, their products, and a deficiency. J Biochem122:251–257 [CrossRef][PubMed]
    [Google Scholar]
  19. Kitagawa Y., Yamaguchi M., Zhou M., Nishio M., Itoh M., Gotoh B.. 2013; Human parainfluenza virus type 2 V protein inhibits TRAF6-mediated ubiquitination of IRF7 to prevent TLR7- and TLR9-dependent interferon induction. J Virol87:7966–7976 [CrossRef][PubMed]
    [Google Scholar]
  20. Kong W. S., Irie T., Yoshida A., Kawabata R., Kadoi T., Sakaguchi T.. 2012; Inhibition of virus-like particle release of Sendai virus and Nipah virus, but not that of mumps virus, by tetherin/CD317/BST-2. Hiroshima J Med Sci61:59–67[PubMed]
    [Google Scholar]
  21. Kubota T., Yokosawa N., Yokota S., Fujii N.. 2001; C terminal CYS-RICH region of mumps virus structural V protein correlates with block of interferon α and γ signal transduction pathway through decrease of STAT 1-α. Biochem Biophys Res Commun283:255–259 [CrossRef][PubMed]
    [Google Scholar]
  22. Kupzig S., Korolchuk V., Rollason R., Sugden A., Wilde A., Banting G.. 2003; Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic4:694–709 [CrossRef][PubMed]
    [Google Scholar]
  23. Lamb R. A., Parks G. D.. 2013; Paramyxoviridae: the viruses and their replication. In Fields Virology, 6th edn. pp957–995Edited by Knipe D. M., Howley P. M.. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  24. Le Tortorec A., Neil S. J.. 2009; Antagonism to and intracellular sequestration of human tetherin by the human immunodeficiency virus type 2 envelope glycoprotein. J Virol83:11966–11978 [CrossRef][PubMed]
    [Google Scholar]
  25. Mangeat B., Cavagliotti L., Lehmann M., Gers-Huber G., Kaur I., Thomas Y., Kaiser L., Piguet V.. 2012; Influenza virus partially counteracts restriction imposed by tetherin/BST-2. J Biol Chem287:22015–22029 [CrossRef][PubMed]
    [Google Scholar]
  26. Mansouri M., Viswanathan K., Douglas J. L., Hines J., Gustin J., Moses A. V., Früh K.. 2009; Molecular mechanism of BST2/tetherin downregulation by K5/MIR2 of Kaposi's sarcoma-associated herpesvirus. J Virol83:9672–9681 [CrossRef][PubMed]
    [Google Scholar]
  27. Miyagi E., Andrew A. J., Kao S., Strebel K.. 2009; Vpu enhances HIV-1 virus release in the absence of Bst-2 cell surface down-modulation and intracellular depletion. Proc Natl Acad Sci U S A106:2868–2873 [CrossRef][PubMed]
    [Google Scholar]
  28. Neil S. J., Zang T., Bieniasz P. D.. 2008; Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature451:425–430 [CrossRef][PubMed]
    [Google Scholar]
  29. Nishio M., Tsurudome M., Kawano M., Watanabe N., Ohgimoto S., Ito M., Komada H., Ito Y.. 1996; Interaction between nucleocapsid protein (NP) and phosphoprotein (P) of human parainfluenza virus type 2: one of the two NP binding sites on P is essential for granule formation. J Gen Virol77:2457–2463 [CrossRef][PubMed]
    [Google Scholar]
  30. Nishio M., Tsurudome M., Ito M., Watanabe N., Kawano M., Komada H., Ito Y.. 1997; Human parainfluenza virus type 2 phosphoprotein: mapping of monoclonal antibody epitopes and location of the multimerization domain. J Gen Virol78:1303–1308 [CrossRef][PubMed]
    [Google Scholar]
  31. Nishio M., Tsurudome M., Ito M., Kawano M., Kusagawa S., Komada H., Ito Y.. 1999; Mapping of domains on the human parainfluenza virus type 2 nucleocapsid protein (NP) required for NP-phosphoprotein or NP-NP interaction. J Gen Virol80:2017–2022 [CrossRef][PubMed]
    [Google Scholar]
  32. Nishio M., Tsurudome M., Ito M., Kawano M., Komada H., Ito Y.. 2001; High resistance of human parainfluenza type 2 virus protein-expressing cells to the antiviral and anti-cell proliferative activities of alpha/beta interferons: cysteine-rich V-specific domain is required for high resistance to the interferons. J Virol75:9165–9176 [CrossRef][PubMed]
    [Google Scholar]
  33. Nishio M., Garcin D., Simonet V., Kolakofsky D.. 2002; The carboxyl segment of the mumps virus V protein associates with Stat proteins in vitro via a tryptophan-rich motif. Virology300:92–99 [CrossRef][PubMed]
    [Google Scholar]
  34. Nishio M., Tsurudome M., Ito M., Garcin D., Kolakofsky D., Ito Y.. 2005; Identification of paramyxovirus V protein residues essential for STAT protein degradation and promotion of virus replication. J Virol79:8591–8601 [CrossRef][PubMed]
    [Google Scholar]
  35. Nishio M., Tsurudome M., Ishihara H., Ito M., Ito Y.. 2007; The conserved carboxyl terminus of human parainfluenza virus type 2 V protein plays an important role in virus growth. Virology362:85–98 [CrossRef][PubMed]
    [Google Scholar]
  36. Ohgimoto S., Bando H., Kawano M., Okamoto K., Kondo K., Tsurudome M., Nishio M., Ito Y.. 1990; Sequence analysis of P gene of human parainfluenza type 2 virus: P and cysteine-rich proteins are translated by two mRNAs that differ by two nontemplated G residues. Virology177:116–123 [CrossRef][PubMed]
    [Google Scholar]
  37. Parisien J. P., Lau J. F., Rodriguez J. J., Sullivan B. M., Moscona A., Parks G. D., Lamb R. A., Horvath C. M.. 2001; The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology283:230–239 [CrossRef][PubMed]
    [Google Scholar]
  38. Paterson R. G., Leser G. P., Shaughnessy M. A., Lamb R. A.. 1995; The paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions. Virology208:121–131 [CrossRef][PubMed]
    [Google Scholar]
  39. Radoshitzky S. R., Dong L., Chi X., Clester J. C., Retterer C., Spurgers K., Kuhn J. H., Sandwick S., Ruthel G., other authors. 2010; Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin. J Virol84:10569–10580 [CrossRef][PubMed]
    [Google Scholar]
  40. Sakuma T., Noda T., Urata S., Kawaoka Y., Yasuda J.. 2009; Inhibition of Lassa and Marburg virus production by tetherin. J Virol83:2382–2385 [CrossRef][PubMed]
    [Google Scholar]
  41. Tokarev A., Suarez M., Kwan W., Fitzpatrick K., Singh R., Guatelli J.. 2013; Stimulation of NF-κB activity by the HIV restriction factor BST2. J Virol87:2046–2057 [CrossRef][PubMed]
    [Google Scholar]
  42. Van Damme N., Goff D., Katsura C., Jorgenson R. L., Mitchell R., Johnson M. C., Stephens E. B., Guatelli J.. 2008; The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe3:245–252 [CrossRef][PubMed]
    [Google Scholar]
  43. Watanabe R., Leser G. P., Lamb R. A.. 2011; Influenza virus is not restricted by tetherin whereas influenza VLP production is restricted by tetherin. Virology417:50–56 [CrossRef][PubMed]
    [Google Scholar]
  44. Winkler M., Bertram S., Gnirß K., Nehlmeier I., Gawanbacht A., Kirchhoff F., Ehrhardt C., Ludwig S., Kiene M., other authors. 2012; Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells. PLoS One7:e43337 [CrossRef][PubMed]
    [Google Scholar]
  45. Yondola M. A., Fernandes F., Belicha-Villanueva A., Uccelini M., Gao Q., Carter C., Palese P.. 2011; Budding capability of the influenza virus neuraminidase can be modulated by tetherin. J Virol85:2480–2491 [CrossRef][PubMed]
    [Google Scholar]
  46. Zhang F., Wilson S. J., Landford W. C., Virgen B., Gregory D., Johnson M. C., Munch J., Kirchhoff F., Bieniasz P. D., Hatziioannou T.. 2009; Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe6:54–67 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhang F., Landford W. N., Ng M., McNatt M. W., Bieniasz P. D., Hatziioannou T.. 2011; SIV Nef proteins recruit the AP-2 complex to antagonize tetherin and facilitate virion release. PLoS Pathog7:e1002039 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000373
Loading
/content/journal/jgv/10.1099/jgv.0.000373
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error