1887

Abstract

Vaccination with live-attenuated polio vaccine has been the primary reason for the drastic reduction of poliomyelitis worldwide. However, reversion of this attenuated poliovirus vaccine occasionally results in the emergence of vaccine-derived polioviruses that may cause poliomyelitis. Thus, the development of anti-poliovirus agents remains a priority for control and eradication of the disease. MicroRNAs (miRNAs) have been shown to regulate viral infection through targeting the viral genome or reducing host factors required for virus replication. However, the roles of miRNAs in poliovirus (PV) replication have not been fully elucidated. In this study, a library of 1200 miRNA mimics was used to identify miRNAs that govern PV replication. High-throughput screening revealed 29 miRNAs with antiviral properties against Sabin-2, which is one of the oral polio vaccine strains. In particular, miR-555 was found to have the most potent antiviral activity against three different oral polio attenuated vaccine strains tested. The results show that miR-555 reduced the level of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) required for PV replication in the infected cells, which in turn resulted in reduction of PV positive-strand RNA synthesis and production of infectious progeny. These findings provide the first evidence for the role of miR-555 in PV replication and reveal that miR-555 could contribute to the development of antiviral therapeutic strategies against PV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000372
2016-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/659.html?itemId=/content/journal/jgv/10.1099/jgv.0.000372&mimeType=html&fmt=ahah

References

  1. Arita M., Wakita T., Shimizu H.. ( 2008;). Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity. J Gen Virol 89: 2518–2530 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bakre A., Mitchell P., Coleman J. K., Jones L. P., Saavedra G., Teng M., Tompkins S. M., Tripp R. A.. ( 2012;). Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol 93: 2346–2356 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bakre A., Andersen L. E., Meliopoulos V., Coleman K., Yan X., Brooks P., Crabtree J., Tompkins S. M., Tripp R. A.. ( 2013;). Identification of host kinase genes required for influenza virus replication and the regulatory role of microRNAs. PLoS One 8: e66796 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bartel D. P.. ( 2004;). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297 [CrossRef] [PubMed].
    [Google Scholar]
  5. Belov G. A., Ehrenfeld E.. ( 2007;). Involvement of cellular membrane traffic proteins in poliovirus replication. Cell Cycle 6: 36–38 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bouchie A.. ( 2013;). First microRNA mimic enters clinic. Nat Biotechnol 31: 577 [CrossRef] [PubMed].
    [Google Scholar]
  7. Brunner J. E., Nguyen J. H., Roehl H. H., Ho T. V., Swiderek K. M., Semler B. L.. ( 2005;). Functional interaction of heterogeneous nuclear ribonucleoprotein C with poliovirus RNA synthesis initiation complexes. J Virol 79: 3254–3266 [CrossRef] [PubMed].
    [Google Scholar]
  8. Brunner J. E., Ertel K. J., Rozovics J. M., Semler B. L.. ( 2010;). Delayed kinetics of poliovirus RNA synthesis in a human cell line with reduced levels of hnRNP C proteins. Virology 400: 240–247 [CrossRef] [PubMed].
    [Google Scholar]
  9. Burns C. C., Shaw J., Campagnoli R., Jorba J., Vincent A., Quay J., Kew O.. ( 2006;). Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol 80: 3259–3272 [CrossRef] [PubMed].
    [Google Scholar]
  10. Cheng M., Si Y., Niu Y., Liu X., Li X., Zhao J., Jin Q., Yang W.. ( 2013;). High-throughput profiling of alpha interferon- and interleukin-28B-regulated microRNAs and identification of let-7s with anti-hepatitis C virus activity by targeting IGF2BP1. J Virol 87: 9707–9718 [CrossRef] [PubMed].
    [Google Scholar]
  11. Collett M. S., Neyts J., Modlin J. F.. ( 2008;). A case for developing antiviral drugs against polio. Antiviral Res 79: 179–187 [CrossRef] [PubMed].
    [Google Scholar]
  12. Coyne C. B., Bozym R., Morosky S. A., Hanna S. L., Mukherjee A., Tudor M., Kim K. S., Cherry S.. ( 2011;). Comparative RNAi screening reveals host factors involved in enterovirus infection of polarized endothelial monolayers. Cell Host Microbe 9: 70–82 [CrossRef] [PubMed].
    [Google Scholar]
  13. Dechtawewat T., Songprakhon P., Limjindaporn T., Puttikhunt C., Kasinrerk W., Saitornuang S., Yenchitsomanus P. T., Noisakran S.. ( 2015;). Role of human heterogeneous nuclear ribonucleoprotein C1/C2 in dengue virus replication. Virol J 12: 14 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dreyfuss G., Matunis M. J., Piñol-Roma S., Burd C. G.. ( 1993;). hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62: 289–321 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ertel K. J., Brunner J. E., Semler B. L.. ( 2010;). Mechanistic consequences of hnRNP C binding to both RNA termini of poliovirus negative-strand RNA intermediates. J Virol 84: 4229–4242 [CrossRef] [PubMed].
    [Google Scholar]
  16. Farberov L., Herzig E., Modai S., Isakov O., Hizi A., Shomron N.. ( 2015;). MicroRNA-mediated regulation of p21 and TASK1 cellular restriction factors enhances HIV-1 infection. J Cell Sci 128: 1607–1616 [CrossRef] [PubMed].
    [Google Scholar]
  17. Filipowicz W., Bhattacharyya S. N., Sonenberg N.. ( 2008;). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet 2008: 102–114 [CrossRef] [PubMed].
    [Google Scholar]
  18. Fu Y. R., Liu X. J., Li X. J., Shen Z. Z., Yang B., Wu C. C., Li J. F., Miao L. F., Ye H. Q.. & other authors ( 2015;). MicroRNA miR-21 attenuates human cytomegalovirus replication in neural cells by targeting Cdc25a. J Virol 89: 1070–1082 [CrossRef] [PubMed].
    [Google Scholar]
  19. Gontarek R. R., Gutshall L. L., Herold K. M., Tsai J., Sathe G. M., Mao J., Prescott C., Del Vecchio A. M.. ( 1999;). hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3′NTR of the HCV RNA genome. Nucleic Acids Res 27: 1457–1463 [CrossRef] [PubMed].
    [Google Scholar]
  20. Görlach M., Wittekind M., Beckman R. A., Mueller L., Dreyfuss G.. ( 1992;). Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. EMBO J 11: 3289–3295 [PubMed].
    [Google Scholar]
  21. Grimson A., Farh K. K., Johnston W. K., Garrett-Engele P., Lim L. P., Bartel D. P.. ( 2007;). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105 [CrossRef] [PubMed].
    [Google Scholar]
  22. Guo J., Bolivar-Wagers S., Srinivas N., Holubar M., Maldonado Y.. ( 2015;). Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: a systematic review and implications for polio eradication. Vaccine 33: 1235–1242 [CrossRef] [PubMed].
    [Google Scholar]
  23. Gustin K. E., Sarnow P.. ( 2001;). Effects of poliovirus infection on nucleo-cytoplasmic trafficking and nuclear pore complex composition. EMBO J 20: 240–249 [CrossRef] [PubMed].
    [Google Scholar]
  24. Han S. P., Tang Y. H., Smith R.. ( 2010;). Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 430: 379–392 [CrossRef] [PubMed].
    [Google Scholar]
  25. He Y., Mueller S., Chipman P. R., Bator C. M., Peng X., Bowman V. D., Mukhopadhyay S., Wimmer E., Kuhn R. J., Rossmann M. G.. ( 2003;). Complexes of poliovirus serotypes with their common cellular receptor, CD155. J Virol 77: 4827–4835 [CrossRef] [PubMed].
    [Google Scholar]
  26. Hsu P. W., Lin L. Z., Hsu S. D., Hsu J. B., Huang H. D.. ( 2007;). ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 35: D381–D385 [CrossRef] [PubMed].
    [Google Scholar]
  27. Hu W., Wang X., Ding X., Li Y., Zhang X., Xie P., Yang J., Wang S.. ( 2012;). MicroRNA-141 represses HBV replication by targeting PPARA. PLoS One 7: e34165 [CrossRef] [PubMed].
    [Google Scholar]
  28. Huang J. Y., Chou S. F., Lee J. W., Chen H. L., Chen C. M., Tao M. H., Shih C.. ( 2015;). MicroRNA-130a can inhibit hepatitis B virus replication via targeting PGC1α and PPARγ. RNA 21: 385–400 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ivanov A. P., Dragunsky E. M.. ( 2005;). ELISA as a possible alternative to the neutralization test for evaluating the immune response to poliovirus vaccines. Expert Rev Vaccines 4: 167–172 [CrossRef] [PubMed].
    [Google Scholar]
  30. Jopling C. L., Yi M., Lancaster A. M., Lemon S. M., Sarnow P.. ( 2005;). Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309: 1577–1581 [CrossRef] [PubMed].
    [Google Scholar]
  31. Kedde M., Agami R.. ( 2008;). Interplay between microRNAs and RNA-binding proteins determines developmental processes. Cell Cycle 7: 899–903 [CrossRef] [PubMed].
    [Google Scholar]
  32. Kitamura N., Semler B. L., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J.. & other authors ( 1981;). Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291: 547–553 [CrossRef] [PubMed].
    [Google Scholar]
  33. Lim L. P., Lau N. C., Garrett-Engele P., Grimson A., Schelter J. M., Castle J., Bartel D. P., Linsley P. S., Johnson J. M.. ( 2005;). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773 [CrossRef] [PubMed].
    [Google Scholar]
  34. McKinlay M. A., Collett M. S., Hincks J. R., Oberste M. S., Pallansch M. A., Okayasu H., Sutter R. W., Modlin J. F., Dowdle W. R.. ( 2014;). Progress in the development of poliovirus antiviral agents and their essential role in reducing risks that threaten eradication. J Infect Dis 210: (Suppl. 1) S447–S453 [CrossRef] [PubMed].
    [Google Scholar]
  35. Minor P.. ( 2009;). Vaccine-derived poliovirus (VDPV): impact on poliomyelitis eradication. Vaccine 27: 2649–2652 [CrossRef] [PubMed].
    [Google Scholar]
  36. Müller S., Imler J. L.. ( 2007;). Dicing with viruses: microRNAs as antiviral factors. Immunity 27: 1–3 [CrossRef] [PubMed].
    [Google Scholar]
  37. Nagy P. D., Pogany J.. ( 2012;). The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 10: 137–149 [PubMed].
    [Google Scholar]
  38. O'Connell R. M., Rao D. S., Chaudhuri A. A., Baltimore D.. ( 2010;). Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10: 111–122 [CrossRef] [PubMed].
    [Google Scholar]
  39. Ruiz A. J., Russell S. J.. ( 2015;). MicroRNAs and oncolytic viruses. Curr Opin Virol 13: 40–48 [CrossRef] [PubMed].
    [Google Scholar]
  40. Skalsky R. L., Cullen B. R.. ( 2010;). Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64: 123–141 [CrossRef] [PubMed].
    [Google Scholar]
  41. Trobaugh D. W., Gardner C. L., Sun C., Haddow A. D., Wang E., Chapnik E., Mildner A., Weaver S. C., Ryman K. D., Klimstra W. B.. ( 2014;). RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature 506: 245–248 [CrossRef] [PubMed].
    [Google Scholar]
  42. Umbach J. L., Cullen B. R.. ( 2009;). The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 23: 1151–1164 [CrossRef] [PubMed].
    [Google Scholar]
  43. Wang M., Gao Z., Pan L., Zhang Y.. ( 2014;). Cellular microRNAs and picornaviral infections. RNA Biol 11: 808–816 [CrossRef] [PubMed].
    [Google Scholar]
  44. Xu S., Witmer P. D., Lumayag S., Kovacs B., Valle D.. ( 2007;). MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem 282: 25053–25066 [CrossRef] [PubMed].
    [Google Scholar]
  45. Zhang X., Liu D., Zhang S., Wei X., Song J., Zhang Y., Jin M., Shen Z., Wang X., other authors. ( 2015;). Host-virus interaction: the antiviral defense function of small interfering RNAs can be enhanced by host microRNA-7 in vitro. Sci Rep 5: 9722 [CrossRef] [PubMed].
    [Google Scholar]
  46. Zheng Z., Ke X., Wang M., He S., Li Q., Zheng C., Zhang Z., Liu Y., Wang H.. ( 2013;). Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J Virol 87: 5645–5656 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000372
Loading
/content/journal/jgv/10.1099/jgv.0.000372
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error