1887

Abstract

Dengue virus (DENV) is a mosquito-borne flavivirus responsible for life-threatening dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). The viral replication machinery containing the core non-structural protein 5 (NS5) is implicated in severe dengue symptoms but molecular details remain obscure. To date, studies seeking to catalogue and characterize interaction networks between viral NS5 and host proteins have been limited to the yeast two-hybrid system, computational prediction and co-immunoprecipitation (IP) of ectopically expressed NS5. However, these traditional approaches do not reproduce a natural course of infection in which a number of DENV NS proteins colocalize and tightly associate during the replication process. Here, we demonstrate the development of a recombinant DENV that harbours a TAP tag in NS5 to study host–virus interactions . We show that our engineered DENV was infective in several human cell lines and that the tags were stable over multiple viral passages, suggesting negligible structural and functional disturbance of NS5. We further provide proof-of-concept for the use of rationally tagged virus by revealing a high confidence NS5 interaction network in human hepatic cells. Our analysis uncovered previously unrecognized hnRNP complexes and several low-abundance fatty acid metabolism genes, which have been implicated in the viral life cycle. This study sets a new standard for investigation of host–flavivirus interactions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000371
2016-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/646.html?itemId=/content/journal/jgv/10.1099/jgv.0.000371&mimeType=html&fmt=ahah

References

  1. Anwar A., Leong K. M., Ng M. L., Chu J. J., Garcia-Blanco M. A.. ( 2009;). The polypyrimidine tract-binding protein is required for efficient dengue virus propagation and associates with the viral replication machinery. J Biol Chem 284: 17021–17029 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ashour J., Laurent-Rolle M., Shi P. Y., García-Sastre A.. ( 2009;). NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83: 5408–5418 [CrossRef] [PubMed].
    [Google Scholar]
  3. Aye K. S., Charngkaew K., Win N., Wai K. Z., Moe K., Punyadee N., Thiemmeca S., Suttitheptumrong A., Sukpanichnant S., other authors. ( 2014;). Pathologic highlights of dengue hemorrhagic fever in 13 autopsy cases from Myanmar. Hum Pathol 45: 1221–1233 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bhatt S., Gething P. W., Brady O. J., Messina J. P., Farlow A. W., Moyes C. L., Drake J. M., Brownstein J. S., Hoen A. G., other authors. ( 2013;). The global distribution and burden of dengue. Nature 496: 504–507 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bidet K., Garcia-Blanco M. A.. ( 2014;). Flaviviral RNAs: weapons and targets in the war between virus and host. Biochem J 462: 215–230 [CrossRef] [PubMed].
    [Google Scholar]
  6. Brunak S., Engelbrecht J., Knudsen S.. ( 1991;). Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 220: 49–65 [CrossRef] [PubMed].
    [Google Scholar]
  7. Brunetti J. E., Scolaro L. A., Castilla V.. ( 2015;). The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a host factor required for dengue virus and Junín virus multiplication. Virus Res 203: 84–91 [CrossRef] [PubMed].
    [Google Scholar]
  8. Carpp L. N., Rogers R. S., Moritz R. L., Aitchison J. D.. ( 2014;). Quantitative proteomic analysis of host-virus interactions reveals a role for Golgi brefeldin A resistance factor 1 (GBF1) in dengue infection. Mol Cell Proteomics 13: 2836–2854 [CrossRef] [PubMed].
    [Google Scholar]
  9. Chiu H. C., Hannemann H., Heesom K. J., Matthews D. A., Davidson A. D.. ( 2014;). High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells. PLoS One 9: e93305 [CrossRef] [PubMed].
    [Google Scholar]
  10. Craig R., Cortens J. P., Beavis R. C.. ( 2004;). Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3: 1234–1242 [CrossRef] [PubMed].
    [Google Scholar]
  11. Cristea I. M., Rozjabek H., Molloy K. R., Karki S., White L. L., Rice C. M., Rout M. P., Chait B. T., MacDonald M. R.. ( 2010;). Host factors associated with the Sindbis virus RNA-dependent RNA polymerase: role for G3BP1 and G3BP2 in virus replication. J Virol 84: 6720–6732 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dinkel H., Michael S., Weatheritt R. J., Davey N. E., Van Roey K., Altenberg B., Toedt G., Uyar B., Seiler M., other authors. ( 2012;). ELM–the database of eukaryotic linear motifs. Nucleic Acids Res 40: (D1), D242–D251 [CrossRef] [PubMed].
    [Google Scholar]
  13. Dong H., Zhang B., Shi P. Y.. ( 2008;). Flavivirus methyltransferase: a novel antiviral target. Antiviral Res 80: 1–10 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dong H., Fink K., Züst R., Lim S. P., Qin C. F., Shi P. Y.. ( 2014;). Flavivirus RNA methylation. J Gen Virol 95: 763–778 [CrossRef] [PubMed].
    [Google Scholar]
  15. Doolittle J. M., Gomez S. M.. ( 2011;). Mapping protein interactions between Dengue virus and its human and insect hosts. PLoS Negl Trop Dis 5: e954 [CrossRef] [PubMed].
    [Google Scholar]
  16. Duangchinda T., Dejnirattisai W., Vasanawathana S., Limpitikul W., Tangthawornchaikul N., Malasit P., Mongkolsapaya J., Screaton G.. ( 2010;). Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. Proc Natl Acad Sci U S A 107: 16922–16927 [CrossRef] [PubMed].
    [Google Scholar]
  17. Fink J., Gu F., Ling L., Tolfvenstam T., Olfat F., Chin K. C., Aw P., George J., Kuznetsov V. A., other authors. ( 2007;). Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1: e86 [CrossRef] [PubMed].
    [Google Scholar]
  18. Germain M. A., Chatel-Chaix L., Gagné B., Bonneil É., Thibault P., Pradezynski F., de Chassey B., Meyniel-Schicklin L., Lotteau V., other authors. ( 2014;). Elucidating novel hepatitis C virus-host interactions using combined mass spectrometry and functional genomics approaches. Mol Cell Proteomics 13: 184–203 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hannemann H., Sung P. Y., Chiu H. C., Yousuf A., Bird J., Lim S. P., Davidson A. D.. ( 2013;). Serotype-specific differences in dengue virus non-structural protein 5 nuclear localization. J Biol Chem 288: 22621–22635 [CrossRef] [PubMed].
    [Google Scholar]
  20. Heaton N. S., Perera R., Berger K. L., Khadka S., Lacount D. J., Kuhn R. J., Randall G.. ( 2010;). Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107: 17345–17350 [CrossRef] [PubMed].
    [Google Scholar]
  21. Higa L. M., Caruso M. B., Canellas F., Soares M. R., Oliveira-Carvalho A. L., Chapeaurouge D. A., Almeida P. M., Perales J., Zingali R. B., Da Poian A. T.. ( 2008;). Secretome of HepG2 cells infected with dengue virus: implications for pathogenesis. Biochim Biophys Acta 1784: 1607–1616 [CrossRef] [PubMed].
    [Google Scholar]
  22. Huang W., Sherman B. T., Lempicki R. A.. ( 2009a;). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37: 1–13 [CrossRef] [PubMed].
    [Google Scholar]
  23. Huang W., Sherman B. T., Lempicki R. A.. ( 2009b;). Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nat Protoc 4: 44–57 [CrossRef] [PubMed].
    [Google Scholar]
  24. Jiang L., Yao H., Duan X., Lu X., Liu Y.. ( 2009;). Polypyrimidine tract-binding protein influences negative strand RNA synthesis of dengue virus. Biochem Biophys Res Commun 385: 187–192 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kamkaew M., Chimnaronk S.. ( 2015;). Characterization of soluble RNA-dependent RNA polymerase from dengue virus serotype 2: The polyhistidine tag compromises the polymerase activity. Protein Expr Purif 112: 43–49 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kawamura-Nagaya K., Ishibashi K., Huang Y. P., Miyashita S., Ishikawa M.. ( 2014;). Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication. Proc Natl Acad Sci U S A 111: E1620–E1628 [CrossRef] [PubMed].
    [Google Scholar]
  27. Khadka S., Vangeloff A. D., Zhang C., Siddavatam P., Heaton N. S., Wang L., Sengupta R., Sahasrabudhe S., Randall G., other authors. ( 2011;). A physical interaction network of dengue virus and human proteins. Mol Cell Proteomics 10: 012187 [CrossRef] [PubMed].
    [Google Scholar]
  28. Khromykh A. A., Sedlak P. L., Guyatt K. J., Hall R. A., Westaway E. G.. ( 1999;). Efficient trans-complementation of the flavivirus kunjin NS5 protein but not of the NS1 protein requires its coexpression with other components of the viral replicase. J Virol 73: 10272–10280 [PubMed].
    [Google Scholar]
  29. Kinney R. M., Butrapet S., Chang G. J., Tsuchiya K. R., Roehrig J. T., Bhamarapravati N., Gubler D. J.. ( 1997;). Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 230: 300–308 [CrossRef] [PubMed].
    [Google Scholar]
  30. Krishnan M. N., Garcia-Blanco M. A.. ( 2014;). Targeting host factors to treat West Nile and dengue viral infections. Viruses 6: 683–708 [CrossRef] [PubMed].
    [Google Scholar]
  31. Le Breton M., Meyniel-Schicklin L., Deloire A., Coutard B., Canard B., de Lamballerie X., Andre P., Rabourdin-Combe C., Lotteau V., Davoust N.. ( 2011;). Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen. BMC Microbiol 11: 234 [CrossRef] [PubMed].
    [Google Scholar]
  32. Leardkamolkarn V., Sirigulpanit W., Chotiwan N., Kumkate S., Huang C. Y.. ( 2012;). Development of Dengue type-2 virus replicons expressing GFP reporter gene in study of viral RNA replication. Virus Res 163: 552–562 [CrossRef] [PubMed].
    [Google Scholar]
  33. Li P., Bai X., Cao Y., Han C., Lu Z., Sun P., Yin H., Liu Z.. ( 2012;). Expression and stability of foreign epitopes introduced into 3A nonstructural protein of foot-and-mouth disease virus. PLoS One 7: e41486 [CrossRef] [PubMed].
    [Google Scholar]
  34. Liew K. J., Chow V. T.. ( 2006;). Microarray and real-time RT-PCR analyses of a novel set of differentially expressed human genes in ECV304 endothelial-like cells infected with dengue virus type 2. J Virol Methods 131: 47–57 [CrossRef] [PubMed].
    [Google Scholar]
  35. Liu W. J., Sedlak P. L., Kondratieva N., Khromykh A. A.. ( 2002;). Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J Virol 76: 10766–10775 [CrossRef] [PubMed].
    [Google Scholar]
  36. MacLean B., Tomazela D. M., Shulman N., Chambers M., Finney G. L., Frewen B., Kern R., Tabb D. L., Liebler D. C., MacCoss M. J.. ( 2010;). Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26: 966–968 [CrossRef] [PubMed].
    [Google Scholar]
  37. Mairiang D., Zhang H., Sodja A., Murali T., Suriyaphol P., Malasit P., Limjindaporn T., Finley R. L. Jr.. ( 2013;). Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PLoS One 8: e53535 [CrossRef] [PubMed].
    [Google Scholar]
  38. Pando-Robles V., Oses-Prieto J. A., Rodríguez-Gandarilla M., Meneses-Romero E., Burlingame A. L., Batista C. V.. ( 2014;). Quantitative proteomic analysis of Huh-7 cells infected with Dengue virus by label-free LC-MS. J Proteomics 111: 16–29 [CrossRef] [PubMed].
    [Google Scholar]
  39. Póvoa T. F., Alves A. M., Oliveira C. A., Nuovo G. J., Chagas V. L., Paes M. V.. ( 2014;). The pathology of severe dengue in multiple organs of human fatal cases: histopathology, ultrastructure and virus replication. PLoS One 9: e83386 [CrossRef] [PubMed].
    [Google Scholar]
  40. Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Séraphin B.. ( 1999;). A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17: 1030–1032 [CrossRef] [PubMed].
    [Google Scholar]
  41. Sabourin M., Tuzon C. T., Fisher T. S., Zakian V. A.. ( 2007;). A flexible protein linker improves the function of epitope-tagged proteins in Saccharomyces cerevisiae. Yeast 24: 39–45 [CrossRef] [PubMed].
    [Google Scholar]
  42. Schoggins J. W., Dorner M., Feulner M., Imanaka N., Murphy M. Y., Ploss A., Rice C. M.. ( 2012;). Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. Proc Natl Acad Sci U S A 109: 14610–14615 [CrossRef] [PubMed].
    [Google Scholar]
  43. Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., Simonovic M., Roth A., Santos A., other authors. ( 2015;). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43: (D1), D447–D452 [CrossRef] [PubMed].
    [Google Scholar]
  44. Teterina N. L., Lauber C., Jensen K. S., Levenson E. A., Gorbalenya A. E., Ehrenfeld E.. ( 2011;). Identification of tolerated insertion sites in poliovirus non-structural proteins. Virology 409: 1–11 [CrossRef] [PubMed].
    [Google Scholar]
  45. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  46. Uchil P. D., Kumar A. V., Satchidanandam V.. ( 2006;). Nuclear localization of flavivirus RNA synthesis in infected cells. J Virol 80: 5451–5464 [CrossRef] [PubMed].
    [Google Scholar]
  47. Usme-Ciro J. A., Lopera J. A., Enjuanes L., Almazán F., Gallego-Gomez J. C.. ( 2014;). Development of a novel DNA-launched dengue virus type 2 infectious clone assembled in a bacterial artificial chromosome. Virus Res 180: 12–22 [CrossRef] [PubMed].
    [Google Scholar]
  48. Vandergaast R., Hoover L. I., Zheng K., Fredericksen B. L.. ( 2014;). Generation of West Nile virus infectious clones containing amino acid insertions between capsid and capsid anchor. Viruses 6: 1637–1653 [CrossRef] [PubMed].
    [Google Scholar]
  49. Wang M., Herrmann C. J., Simonovic M., Szklarczyk D., von Mering C.. ( 2015;). Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics 15: 3163–3168 [CrossRef] [PubMed].
    [Google Scholar]
  50. Welsch S., Miller S., Romero-Brey I., Merz A., Bleck C. K., Walther P., Fuller S. D., Antony C., Krijnse-Locker J., Bartenschlager R.. ( 2009;). Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5: 365–375 [CrossRef] [PubMed].
    [Google Scholar]
  51. WHO ( 2009;). Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition Geneva: World Health Organization;.
    [Google Scholar]
  52. Xu S., Pei R., Guo M., Han Q., Lai J., Wang Y., Wu C., Zhou Y., Lu M., Chen X.. ( 2012;). Cytosolic phospholipase A2 gamma is involved in hepatitis C virus replication and assembly. J Virol 86: 13025–13037 [CrossRef] [PubMed].
    [Google Scholar]
  53. Zou G., Xu H. Y., Qing M., Wang Q. Y., Shi P. Y.. ( 2011;). Development and characterization of a stable luciferase dengue virus for high-throughput screening. Antiviral Res 91: 11–19 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000371
Loading
/content/journal/jgv/10.1099/jgv.0.000371
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error