1887

Abstract

Cellular chemotaxis is important to tissue homeostasis and proper development. Human herpesvirus species influence cellular chemotaxis by regulating cellular chemokines and chemokine receptors. Herpesviruses also express various viral chemokines and chemokine receptors during infection. These changes to chemokine concentrations and receptor availability assist in the pathogenesis of herpesviruses and contribute to a variety of diseases and malignancies. By interfering with the positioning of host cells during herpesvirus infection, viral spread is assisted, latency can be established and the immune system is prevented from eradicating viral infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000370
2016-03-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/3/543.html?itemId=/content/journal/jgv/10.1099/jgv.0.000370&mimeType=html&fmt=ahah

References

  1. Abend J. R., Uldrick T., Ziegelbauer J. M.. 2010; Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi's sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J Virol84:12139–12151 [CrossRef][PubMed]
    [Google Scholar]
  2. Ablashi D. V., Lusso P., Hung C. L., Salahuddin S. Z., Josephs S. F., Llana T., Kramarsky B., Biberfeld P., P D., Gallo R. C.. 1989; Utilization of human hematopoietic cell lines for the propagation and characterization of HBLV (human herpesvirus 6). Dev Biol Stand70:139–146
    [Google Scholar]
  3. Ablashi D., Agut H., Berneman Z., Campadelli-Fiume G., Carrigan D., Ceccerini-Nelli L., Chandran B., Chou S., Collandre H., other authors. 1993; Human herpesvirus-6 strain groups: a nomenclature. Arch Virol129:363–366 [CrossRef][PubMed]
    [Google Scholar]
  4. Ablashi D. V., Berneman Z. N., Kramarsky B., Whitman J. Jr, Asano Y., Pearson G. R.. 1995; Human herpesvirus-7 (HHV-7): current status. Clin Diagn Virol4:1–13 [CrossRef][PubMed]
    [Google Scholar]
  5. Ablashi D., Agut H., Alvarez-Lafuente R., Clark D. A., Dewhurst S., DiLuca D., Flamand L., Frenkel N., Gallo R., other authors. 2014; Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol159:863–870 [CrossRef][PubMed]
    [Google Scholar]
  6. Adams M. J., Carstens E. B.. 2012; Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012). Arch Virol157:1411–1422 [CrossRef][PubMed]
    [Google Scholar]
  7. Alkhatib G.. 2009; The biology of CCR5 and CXCR4. Curr Opin HIV AIDS4:96–103 [CrossRef][PubMed]
    [Google Scholar]
  8. Amon W., Farrell P. J.. 2005; Reactivation of Epstein-Barr virus from latency. Rev Med Virol15:149–156 [CrossRef][PubMed]
    [Google Scholar]
  9. Ansari A. W., Kamarulzaman A., Schmidt R. E.. 2013; Multifaceted impact of host C-C chemokine CCL2 in the immuno-pathogenesis of HIV-1/M. tuberculosis co-infection. Front Immunol4:312 [CrossRef][PubMed]
    [Google Scholar]
  10. Ariza-Heredia E. J., Nesher L., Chemaly R. F.. 2014; Cytomegalovirus diseases after hematopoietic stem cell transplantation: a mini-review. Cancer Lett342:1–8 [CrossRef][PubMed]
    [Google Scholar]
  11. Arnolds K. L., Lares A. P., Spencer J. V.. 2013; The US27 gene product of human cytomegalovirus enhances signaling of host chemokine receptor CXCR4. Virology439:122–131 [CrossRef][PubMed]
    [Google Scholar]
  12. Arvanitakis L., Geras-Raaka E., Varma A., Gershengorn M. C., Cesarman E.. 1997; Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature385:347–350 [CrossRef][PubMed]
    [Google Scholar]
  13. Avey D., Brewers B., Zhu F.. 2015; Recent advances in the study of Kaposi's sarcoma-associated herpesvirus replication and pathogenesis. Virol Sin30:130–145 [CrossRef][PubMed]
    [Google Scholar]
  14. Balfour H.H., Jr., Holman C. J., Hokanson K. M., Lelonek M. M., Giesbrecht J. E., White D. R., Schmeling D. O., Webb C. H., Cavert W., other authors. 2005; A prospective clinical study of Epstein-Barr virus and host interactions during acute infectious mononucleosis. J Infect Dis192:1505–1512 [CrossRef][PubMed]
    [Google Scholar]
  15. Balkwill F.. 2004; Cancer and the chemokine network. Nat Rev Cancer4:540–550 [CrossRef][PubMed]
    [Google Scholar]
  16. Bazan J. F., Bacon K. B., Hardiman G., Wang W., Soo K., Rossi D., Greaves D. R., Zlotnik A., Schall T. J.. 1997; A new class of membrane-bound chemokine with a CX3C motif. Nature385:640–644 [CrossRef][PubMed]
    [Google Scholar]
  17. Bellner L., Thorén F., Nygren E., Liljeqvist J. A., Karlsson A., Eriksson K.. 2005; A proinflammatory peptide from herpes simplex virus type 2 glycoprotein G affects neutrophil, monocyte, and NK cell functions. J Immunol174:2235–2241 [CrossRef][PubMed]
    [Google Scholar]
  18. Bialas K. M., Swamy G. K., Permar S. R.. 2015; Perinatal cytomegalovirus and varicella zoster virus infections: epidemiology, prevention, and treatment. Clin Perinatol42:61–75[CrossRef]
    [Google Scholar]
  19. Billottet C., Quemener C., Bikfalvi A.. 2013; CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta1836:287–295[PubMed]
    [Google Scholar]
  20. Birkenbach M., Josefsen K., Yalamanchili R., Lenoir G., Kieff E.. 1993; Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors. J Virol67:2209–2220[PubMed]
    [Google Scholar]
  21. Bongers G., Maussang D., Muniz L. R., Noriega V. M., Fraile-Ramos A., Barker N., Marchesi F., Thirunarayanan N., Vischer H. F., other authors. 2010; The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice. J Clin Invest120:3969–3978 [CrossRef][PubMed]
    [Google Scholar]
  22. Bussolino F., Wang J. M., Defilippi P., Turrini F., Sanavio F., Edgell C. J., Aglietta M., Arese P., Mantovani A.. 1989; Granulocyte- and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate. Nature337:471–473 [CrossRef][PubMed]
    [Google Scholar]
  23. Calderón L., Boehm T.. 2011; Three chemokine receptors cooperatively regulate homing of hematopoietic progenitors to the embryonic mouse thymus. Proc Natl Acad Sci U S A108:7517–7522 [CrossRef][PubMed]
    [Google Scholar]
  24. Cannon M. J., Davis K. F.. 2005; Washing our hands of the congenital cytomegalovirus disease epidemic. BMC Public Health5:70 [CrossRef][PubMed]
    [Google Scholar]
  25. Cannon M. J., Schmid D. S., Hyde T. B.. 2010; Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol20:202–213 [CrossRef][PubMed]
    [Google Scholar]
  26. Carlsen H. S., Baekkevold E. S., Morton H. C., Haraldsen G., Brandtzaeg P.. 2004; Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood104:3021–3027 [CrossRef][PubMed]
    [Google Scholar]
  27. Catusse J., Parry C. M., Dewin D. R., Gompels U. A.. 2007; Inhibition of HIV-1 infection by viral chemokine U83A via high-affinity CCR5 interactions that block human chemokine-induced leukocyte chemotaxis and receptor internalization. Blood109:3633–3639 [CrossRef][PubMed]
    [Google Scholar]
  28. Catusse J., Spinks J., Mattick C., Dyer A., Laing K., Fitzsimons C., Smit M. J., Gompels U. A.. 2008; Immunomodulation by herpesvirus U51A chemokine receptor via CCL5 and FOG-2 down-regulation plus XCR1 and CCR7 mimicry in human leukocytes. Eur J Immunol38:763–777 [CrossRef][PubMed]
    [Google Scholar]
  29. Cerdan C., Devilard E., Xerri L., Olive D.. 2001; The C-class chemokine lymphotactin costimulates the apoptosis of human CD4+T cells. Blood97:2205–2212 [CrossRef][PubMed]
    [Google Scholar]
  30. Cesarman E., Chang Y., Moore P. S., Said J. W., Knowles D. M.. 1995; Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med332:1186–1191 [CrossRef][PubMed]
    [Google Scholar]
  31. Cesarman E., Nador R. G., Bai F., Bohenzky R. A., Russo J. J., Moore P. S., Chang Y., Knowles D. M.. 1996; Kaposi's sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi's sarcoma and malignant lymphoma. J Virol70:8218–8223[PubMed]
    [Google Scholar]
  32. Chang Y., Cesarman E., Pessin M. S., Lee F., Culpepper J., Knowles D. M., Moore P. S.. 1994; Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science266:1865–1869 [CrossRef][PubMed]
    [Google Scholar]
  33. Chang W. L., Baumgarth N., Yu D., Barry P. A.. 2004; Human cytomegalovirus-encoded interleukin-10 homolog inhibits maturation of dendritic cells and alters their functionality. J Virol78:8720–8731 [CrossRef][PubMed]
    [Google Scholar]
  34. Chen D. H., Jiang H., Lee M., Liu F., Zhou Z. H.. 1999; Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology260:10–16 [CrossRef][PubMed]
    [Google Scholar]
  35. Chuh A., Chan H., Zawar V.. 2004; Pityriasis rosea—evidence for and against an infectious aetiology. Epidemiol Infect132:381–390 [CrossRef][PubMed]
    [Google Scholar]
  36. Clark D. A., Kidd I. M., Collingham K. E., Tarlow M., Ayeni T., Riordan A., Griffiths P. D., Emery V. C., Pillay D.. 1997; Diagnosis of primary human herpesvirus 6 and 7 infections in febrile infants by polymerase chain reaction. Arch Dis Child77:42–45 [CrossRef][PubMed]
    [Google Scholar]
  37. Clark D. J., Catusse J., Stacey A., Borrow P., Gompels U. A.. 2013; Activation of CCR2+ human proinflammatory monocytes by human herpesvirus-6B chemokine N-terminal peptide. J Gen Virol94:1624–1635 [CrossRef][PubMed]
    [Google Scholar]
  38. Cohen J. I.. 2000; Epstein-Barr virus infection. N Engl J Med343:481–492 [CrossRef][PubMed]
    [Google Scholar]
  39. Comerford I., Harata-Lee Y., Bunting M. D., Gregor C., Kara E. E., McColl S. R.. 2013; A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev24:269–283 [CrossRef][PubMed]
    [Google Scholar]
  40. Cotter M. A. II, Robertson E. S.. 2000; Modulation of histone acetyltransferase activity through interaction of Epstein-Barr nuclear antigen 3C with prothymosin alpha. Mol Cell Biol20:5722–5735 [CrossRef][PubMed]
    [Google Scholar]
  41. Couty J. P., Lupu-Meiri M., Oron Y., Gershengorn M. C.. 2009; Kaposi's sarcoma-associated herpesvirus-G protein-coupled receptor-expressing endothelial cells exhibit reduced migration and stimulated chemotaxis by chemokine inverse agonists. J Pharmacol Exp Ther329:1142–1147 [CrossRef][PubMed]
    [Google Scholar]
  42. Cyster J. G.. 2010; B cell follicles and antigen encounters of the third kind. Nat Immunol11:989–996 [CrossRef][PubMed]
    [Google Scholar]
  43. Cyster J. G., Ansel K. M., Reif K., Ekland E. H., Hyman P. L., Tang H. L., Luther S. A., Ngo V. N.. 2000; Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev176:181–193 [CrossRef][PubMed]
    [Google Scholar]
  44. Deanfield J. E., Halcox J. P., Rabelink T. J.. 2007; Endothelial function and dysfunction: testing and clinical relevance. Circulation115:1285–1295[PubMed]
    [Google Scholar]
  45. Desloges N., Schubert C., Wolff M. H., Rahaus M.. 2008; Varicella-zoster virus infection induces the secretion of interleukin-8. Med Microbiol Immunol (Berl)197:277–284 [CrossRef][PubMed]
    [Google Scholar]
  46. Dewin D. R., Catusse J., Gompels U. A.. 2006; Identification and characterization of U83A viral chemokine, a broad and potent β-chemokine agonist for human CCRs with unique selectivity and inhibition by spliced isoform. J Immunol176:544–556 [CrossRef][PubMed]
    [Google Scholar]
  47. Domanska U. M., Kruizinga R. C., Nagengast W. B., Timmer-Bosscha H., Huls G., de Vries E. G., Walenkamp A. M.. 2013; A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer49:219–230 [CrossRef][PubMed]
    [Google Scholar]
  48. Ebisuno Y., Tanaka T., Kanemitsu N., Kanda H., Yamaguchi K., Kaisho T., Akira S., Miyasaka M.. 2003; Cutting edge: the B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer's patches and affects B cell trafficking across high endothelial venules. J Immunol171:1642–1646 [CrossRef][PubMed]
    [Google Scholar]
  49. Ehlin-Henriksson B., Mowafi F., Klein G., Nilsson A.. 2006; Epstein-Barr virus infection negatively impacts the CXCR4-dependent migration of tonsillar B cells. Immunology117:379–385 [CrossRef][PubMed]
    [Google Scholar]
  50. Ehlin-Henriksson B., Liang W., Cagigi A., Mowafi F., Klein G., Nilsson A.. 2009; Changes in chemokines and chemokine receptor expression on tonsillar B cells upon Epstein-Barr virus infection. Immunology127:549–557 [CrossRef][PubMed]
    [Google Scholar]
  51. Fielding C. A.. 2015; Mimicry of cytokine pathways by human herpesviruses. Future Virol10:41–51 [CrossRef]
    [Google Scholar]
  52. Fitzsimons C. P., Gompels U. A., Verzijl D., Vischer H. F., Mattick C., Leurs R., Smit M. J.. 2006; Chemokine-directed trafficking of receptor stimulus to different G proteins: selective inducible and constitutive signaling by human herpesvirus 6-encoded chemokine receptor U51. Mol Pharmacol69:888–898[PubMed]
    [Google Scholar]
  53. Flint S. J., American Society for Microbiology. 2009; Principles of Virology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  54. Fraile-Ramos A., Pelchen-Matthews A., Kledal T. N., Browne H., Schwartz T. W., Marsh M.. 2002; Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic3:218–232 [CrossRef][PubMed]
    [Google Scholar]
  55. Franciotta D., Salvetti M., Lolli F., Serafini B., Aloisi F.. 2008; B cells and multiple sclerosis. Lancet Neurol7:852–858 [CrossRef][PubMed]
    [Google Scholar]
  56. Frascaroli G., Varani S., Moepps B., Sinzger C., Landini M. P., Mertens T.. 2006; Human cytomegalovirus subverts the functions of monocytes, impairing chemokine-mediated migration and leukocyte recruitment. J Virol80:7578–7589 [CrossRef][PubMed]
    [Google Scholar]
  57. Frascaroli G., Varani S., Blankenhorn N., Pretsch R., Bacher M., Leng L., Bucala R., Landini M. P., Mertens T.. 2009; Human cytomegalovirus paralyzes macrophage motility through down-regulation of chemokine receptors, reorganization of the cytoskeleton, and release of macrophage migration inhibitory factor. J Immunol182:477–488 [CrossRef][PubMed]
    [Google Scholar]
  58. French C., Menegazzi P., Nicholson L., Macaulay H., DiLuca D., Gompels U. A.. 1999; Novel, nonconsensus cellular splicing regulates expression of a gene encoding a chemokine-like protein that shows high variation and is specific for human herpesvirus 6. Virology262:139–151 [CrossRef][PubMed]
    [Google Scholar]
  59. Gandhi M. K., Khanna R.. 2004; Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis4:725–738 [CrossRef][PubMed]
    [Google Scholar]
  60. Ganem D.. 2010; KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest120:939–949 [CrossRef][PubMed]
    [Google Scholar]
  61. Gao H., Tao R., Zheng Q., Xu J., Shang S.. 2013; Recombinant HCMV UL128 expression and functional identification of PBMC-attracting activity in vitro. Arch Virol158:173–177 179[CrossRef]
    [Google Scholar]
  62. Gatto D., Brink R.. 2013; B cell localization: regulation by EBI2 and its oxysterol ligand. Trends Immunol34:336–341 [CrossRef][PubMed]
    [Google Scholar]
  63. Gilden D., Nagel M. A., Cohrs R. J.. 2014; Varicella-zoster. Handb Clin Neurol123:265–283 [CrossRef][PubMed]
    [Google Scholar]
  64. Grivel J. C., Ito Y., Fagà G., Santoro F., Shaheen F., Malnati M. S., Fitzgerald W., Lusso P., Margolis L.. 2001; Suppression of CCR5- but not CXCR4-tropic HIV-1 in lymphoid tissue by human herpesvirus 6. Nat Med7:1232–1235 [CrossRef][PubMed]
    [Google Scholar]
  65. Grivel J. C., Santoro F., Chen S., Fagá G., Malnati M. S., Ito Y., Margolis L., Lusso P.. 2003; Pathogenic effects of human herpesvirus 6 in human lymphoid tissue ex vivo. J Virol77:8280–8289 [CrossRef][PubMed]
    [Google Scholar]
  66. Hall C. B., Caserta M. T., Schnabel K. C., McDermott M. P., Lofthus G. K., Carnahan J. A., Gilbert L. M., Dewhurst S.. 2006; Characteristics and acquisition of human herpesvirus (HHV) 7 infections in relation to infection with HHV-6. J Infect Dis193:1063–1069 [CrossRef][PubMed]
    [Google Scholar]
  67. Hannedouche S., Zhang J., Yi T., Shen W., Nguyen D., Pereira J. P., Guerini D., Baumgarten B. U., Roggo S., other authors. 2011; Oxysterols direct immune cell migration via EBI2. Nature475:524–527 [CrossRef][PubMed]
    [Google Scholar]
  68. Hasegawa H., Utsunomiya Y., Yasukawa M., Yanagisawa K., Fujita S.. 1994; Induction of G protein-coupled peptide receptor EBI 1 by human herpesvirus 6 and 7 infection in CD4+T cells. J Virol68:5326–5329[PubMed]
    [Google Scholar]
  69. Hensbergen P. J., Verzijl D., Balog C. I., Dijkman R., van der Schors R. C., van der Raaij-Helmer E. M., van der Plas M. J., Leurs R., Deelder A. M., other authors. 2004; Furin is a chemokine-modifying enzyme: in vitro and in vivo processing of CXCL10 generates a C-terminally truncated chemokine retaining full activity. J Biol Chem279:13402–13411 [CrossRef][PubMed]
    [Google Scholar]
  70. Hochberg D., Middeldorp J. M., Catalina M., Sullivan J. L., Luzuriaga K., Thorley-Lawson D. A.. 2004a; Demonstration of the Burkitt's lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A101:239–244 [CrossRef][PubMed]
    [Google Scholar]
  71. Hochberg D., Souza T., Catalina M., Sullivan J. L., Luzuriaga K., Thorley-Lawson D. A.. 2004b; Acute infection with Epstein-Barr virus targets and overwhelms the peripheral memory B-cell compartment with resting, latently infected cells. J Virol78:5194–5204 [CrossRef][PubMed]
    [Google Scholar]
  72. Huang W., Hu K., Luo S., Zhang M., Li C., Jin W., Liu Y., Griffin G. E., Shattock R. J., Hu Q.. 2012; Herpes simplex virus type 2 infection of human epithelial cells induces CXCL9 expression and CD4+T cell migration via activation of p38-CCAAT/enhancer-binding protein-β pathway. J Immunol188:6247–6257 [CrossRef][PubMed]
    [Google Scholar]
  73. Ihara T., Yasuda N., Kamiya H., Torigoe S., Sakurai M.. 1991; Chemotaxis of polymorphonuclear leukocytes to varicella-zoster virus antigens. Microb Pathog10:451–458 [CrossRef][PubMed]
    [Google Scholar]
  74. Isegawa Y., Ping Z., Nakano K., Sugimoto N., Yamanishi K.. 1998; Human herpesvirus 6 open reading frame U12 encodes a functional beta-chemokine receptor. J Virol72:6104–6112[PubMed]
    [Google Scholar]
  75. Karpova D., Bonig H.. 2015; Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis—lessons from pharmacological and genetic models. Stem Cells33:2391–2399[CrossRef]
    [Google Scholar]
  76. Kelly L. M., Pereira J. P., Yi T., Xu Y., Cyster J. G.. 2011; EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J Immunol187:3026–3032 [CrossRef][PubMed]
    [Google Scholar]
  77. Kim Y., Lee S., Kim S., Kim D., Ahn J. H., Ahn K.. 2012; Human cytomegalovirus clinical strain-specific microRNA miR-UL148D targets the human chemokine RANTES during infection. PLoS Pathog8:e1002577 [CrossRef][PubMed]
    [Google Scholar]
  78. Kledal T. N., Rosenkilde M. M., Schwartz T. W.. 1998; Selective recognition of the membrane-bound CX3C chemokine, fractalkine, by the human cytomegalovirus-encoded broad-spectrum receptor US28. FEBS Lett441:209–214 [CrossRef][PubMed]
    [Google Scholar]
  79. Kutok J. L., Wang F.. 2006; Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol1:375–404 [CrossRef][PubMed]
    [Google Scholar]
  80. Lee A. W., Hertel L., Louie R. K., Burster T., Lacaille V., Pashine A., Abate D. A., Mocarski E. S., Mellins E. D.. 2006; Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells. J Immunol177:3960–3971 [CrossRef][PubMed]
    [Google Scholar]
  81. Legler D. F., Loetscher M., Roos R. S., Clark-Lewis I., Baggiolini M., Moser B.. 1998; B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J Exp Med187:655–660 [CrossRef][PubMed]
    [Google Scholar]
  82. Li Q., Spriggs M. K., Kovats S., Turk S. M., Comeau M. R., Nepom B., Hutt-Fletcher L. M.. 1997; Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol71:4657–4662[PubMed]
    [Google Scholar]
  83. Li X., Liang D., Lin X., Robertson E. S., Lan K.. 2011; Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen reduces interleukin-8 expression in endothelial cells and impairs neutrophil chemotaxis by degrading nuclear p65. J Virol85:8606–8615 [CrossRef][PubMed]
    [Google Scholar]
  84. Liu C., Yang X. V., Wu J., Kuei C., Mani N. S., Zhang L., Yu J., Sutton S. W., Qin N.. other authors 2011; Oxysterols direct B-cell migration through EBI2. Nature475:519–523[CrossRef]
    [Google Scholar]
  85. Liu G. X., Lan J., Sun Y., Hu Y. J., Jiang G. S.. 2012; Expression of the chemokine CCL28 in pleomorphic adenoma and adenolymphoma of the human salivary glands. Exp Ther Med4:65–69[PubMed]
    [Google Scholar]
  86. Luker K. E., Luker G. D.. 2006; Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett238:30–41 [CrossRef][PubMed]
    [Google Scholar]
  87. Lusso P., De Maria A., Malnati M., Lori F., DeRocco S. E., Baseler M., Gallo R. C.. 1991; Induction of CD4 and susceptibility to HIV-1 infection in human CD8+T lymphocytes by human herpesvirus 6. Nature349:533–535 [CrossRef][PubMed]
    [Google Scholar]
  88. Lusso P., Malnati M. S., Garzino-Demo A., Crowley R. W., Long E. O., Gallo R. C.. 1993; Infection of natural killer cells by human herpesvirus 6. Nature362:458–462 [CrossRef][PubMed]
    [Google Scholar]
  89. Lusso P., Garzino-Demo A., Crowley R. W., Malnati M. S.. 1995; Infection of gamma/delta T lymphocytes by human herpesvirus 6: transcriptional induction of CD4 and susceptibility to HIV infection. J Exp Med181:1303–1310 [CrossRef][PubMed]
    [Google Scholar]
  90. Lusso P., Crowley R. W., Malnati M. S., Di Serio C., Ponzoni M., Biancotto A., Markham P. D., Gallo R. C.. 2007; Human herpesvirus 6A accelerates AIDS progression in macaques. Proc Natl Acad Sci U S A104:5067–5072 [CrossRef][PubMed]
    [Google Scholar]
  91. Luther S. A., Bidgol A., Hargreaves D. C., Schmidt A., Xu Y., Paniyadi J., Matloubian M., Cyster J. G.. 2002; Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol169:424–433 [CrossRef][PubMed]
    [Google Scholar]
  92. Lüttichau H. R.. 2010; The cytomegalovirus UL146 gene product vCXCL1 targets both CXCR1 and CXCR2 as an agonist. J Biol Chem285:9137–9146 [CrossRef][PubMed]
    [Google Scholar]
  93. Lüttichau H. R., Clark-Lewis I., Jensen P.Ø., Moser C., Gerstoft J., Schwartz T. W.. 2003; A highly selective CCR2 chemokine agonist encoded by human herpesvirus 6. J Biol Chem278:10928–10933 [CrossRef][PubMed]
    [Google Scholar]
  94. Lüttichau H. R., Johnsen A. H., Jurlander J., Rosenkilde M. M., Schwartz T. W.. 2007; Kaposi sarcoma-associated herpes virus targets the lymphotactin receptor with both a broad spectrum antagonist vCCL2 and a highly selective and potent agonist vCCL3. J Biol Chem282:17794–17805 [CrossRef][PubMed]
    [Google Scholar]
  95. Martin L. K., Schub A., Dillinger S., Moosmann A.. 2012; Specific CD8 T cells recognize human herpesvirus 6B. Eur J Immunol42:2901–2912 [CrossRef][PubMed]
    [Google Scholar]
  96. Martinez-Martin N., Viejo-Borbolla A., Martín R., Blanco S., Benovic J. L., Thelen M., Alcamí A.. 2015; Herpes simplex virus enhances chemokine function through modulation of receptor trafficking and oligomerization. Nat Commun6:6163 [CrossRef][PubMed]
    [Google Scholar]
  97. Masood R., Cai J., Tulpule A., Zheng T., Hamilton A., Sharma S., Espina B. M., Smith D. L., Gill P. S.. 2001; Interleukin 8 is an autocrine growth factor and a surrogate marker for Kaposi's sarcoma. Clin Cancer Res7:2693–2702[PubMed]
    [Google Scholar]
  98. Mazzucchelli L., Blaser A., Kappeler A., Schärli P., Laissue J. A., Baggiolini M., Uguccioni M.. 1999; BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J Clin Invest104:R49–R54 [CrossRef][PubMed]
    [Google Scholar]
  99. McClellan M. J., Khasnis S., Wood C. D., Palermo R. D., Schlick S. N., Kanhere A. S., Jenner R. G., West M. J.. 2012; Downregulation of integrin receptor-signaling genes by Epstein-Barr virus EBNA 3C via promoter-proximal and -distal binding elements. J Virol86:5165–5178 [CrossRef][PubMed]
    [Google Scholar]
  100. McGavran M. H., Smith M. G.. 1965; Ultrastructural, cytochemical, and microchemical observations on cytomegalovirus (salivary gland virus) infection of human cells in tissue culture. Exp Mol Pathol4:1–10 [CrossRef][PubMed]
    [Google Scholar]
  101. Mihara T., Mutoh T., Yoshikawa T., Yano S., Asano Y., Yamamoto H.. 2005; Postinfectious myeloradiculoneuropathy with cranial nerve involvements associated with human herpesvirus 7 infection. Arch Neurol62:1755–1757 [CrossRef][PubMed]
    [Google Scholar]
  102. Milne R. S., Mattick C., Nicholson L., Devaraj P., Alcami A., Gompels U. A.. 2000; RANTES binding and down-regulation by a novel human herpesvirus-6 β chemokine receptor. J Immunol164:2396–2404 [CrossRef][PubMed]
    [Google Scholar]
  103. Moore P. S., Chang Y.. 2003; Kaposi's sarcoma-associated herpesvirus immunoevasion and tumorigenesis: two sides of the same coin?. Annu Rev Microbiol57:609–639 [CrossRef][PubMed]
    [Google Scholar]
  104. Moutaftsi M., Brennan P., Spector S. A., Tabi Z.. 2004; Impaired lymphoid chemokine-mediated migration due to a block on the chemokine receptor switch in human cytomegalovirus-infected dendritic cells. J Virol78:3046–3054 [CrossRef][PubMed]
    [Google Scholar]
  105. Murphy G., Caplice N., Molloy M.. 2008; Fractalkine in rheumatoid arthritis: a review to date. Rheumatology (Oxford)47:1446–1451 [CrossRef][PubMed]
    [Google Scholar]
  106. Nakano K., Isegawa Y., Zou P., Tadagaki K., Inagi R., Yamanishi K.. 2003; Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded vMIP-I and vMIP-II induce signal transduction and chemotaxis in monocytic cells. Arch Virol148:871–890 [CrossRef][PubMed]
    [Google Scholar]
  107. Nakayama T., Fujisawa R., Izawa D., Hieshima K., Takada K., Yoshie O.. 2002; Human B cells immortalized with Epstein-Barr virus upregulate CCR6 and CCR10 and downregulate CXCR4 and CXCR5. J Virol76:3072–3077 [CrossRef][PubMed]
    [Google Scholar]
  108. Nash B., Meucci O.. 2014; Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. Int Rev Neurobiol118:105–128 [CrossRef][PubMed]
    [Google Scholar]
  109. Nicholas J.. 1996; Determination and analysis of the complete nucleotide sequence of human herpesvirus. J Virol70:5975–5989[PubMed]
    [Google Scholar]
  110. Nomura T., Hasegawa H., Kohno M., Sasaki M., Fujita S.. 2001; Enhancement of anti-tumor immunity by tumor cells transfected with the secondary lymphoid tissue chemokine EBI-1-ligand chemokine and stromal cell-derived factor-1α chemokine genes. Int J Cancer91:597–606 [CrossRef][PubMed]
    [Google Scholar]
  111. Ohl L., Henning G., Krautwald S., Lipp M., Hardtke S., Bernhardt G., Pabst O., Förster R.. 2003; Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med197:1199–1204 [CrossRef][PubMed]
    [Google Scholar]
  112. Okada T., Ngo V. N., Ekland E. H., Förster R., Lipp M., Littman D. R., Cyster J. G.. 2002; Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J Exp Med196:65–75 [CrossRef][PubMed]
    [Google Scholar]
  113. Park B., Oh H., Lee S., Song Y., Shin J., Sung Y. C., Hwang S. Y., Ahn K.. 2002; The MHC class I homolog of human cytomegalovirus is resistant to down-regulation mediated by the unique short region protein (US)2, US3, US6, and US11 gene products. J Immunol168:3464–3469 [CrossRef][PubMed]
    [Google Scholar]
  114. Pati S., Cavrois M., Guo H. G., Foulke J. S. Jr., Kim J., Feldman R. A., Reitz M.. 2001; Activation of NF-κB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi's sarcoma pathogenesis. J Virol75:8660–8673 [CrossRef][PubMed]
    [Google Scholar]
  115. Penfold M. E., Dairaghi D. J., Duke G. M., Saederup N., Mocarski E. S., Kemble G. W., Schall T. J.. 1999; Cytomegalovirus encodes a potent α chemokine. Proc Natl Acad Sci U S A96:9839–9844 [CrossRef][PubMed]
    [Google Scholar]
  116. Poole E., King C. A., Sinclair J. H., Alcami A.. 2006; The UL144 gene product of human cytomegalovirus activates NFκB via a TRAF6-dependent mechanism. EMBO J25:4390–4399 [CrossRef][PubMed]
    [Google Scholar]
  117. Poznansky M. C., Olszak I. T., Evans R. H., Wang Z., Foxall R. B., Olson D. P., Weibrecht K., Luster A. D., Scadden D. T.. 2002; Thymocyte emigration is mediated by active movement away from stroma-derived factors. J Clin Invest109:1101–1110 [CrossRef][PubMed]
    [Google Scholar]
  118. Radkov S. A., Touitou R., Brehm A., Rowe M., M ., Kouzarides T., Allday M. J.. 1999; Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol73:5688–5697[PubMed]
    [Google Scholar]
  119. Reinhardt B., Godfrey R., Fellbrich G., Frank H., Lüske A., Olieslagers S., Mertens T., Waltenberger J.. 2014; Human cytomegalovirus infection impairs endothelial cell chemotaxis by disturbing VEGF signalling and actin polymerization. Cardiovasc Res104:315–325 [CrossRef][PubMed]
    [Google Scholar]
  120. Rosenkilde M. M., Schwartz T. W.. 2004; The chemokine system - a major regulator of angiogenesis in health and disease. Acta Path Microbiol Immunol Scand112:481–495[CrossRef]
    [Google Scholar]
  121. Salahuddin S. Z., Ablashi D. V., Markham P. D., Josephs S. F., Sturzenegger S., Kaplan M., Halligan G., Biberfeld P., Wong-Staal F., other authors. 1986; Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science234:596–601 [CrossRef][PubMed]
    [Google Scholar]
  122. Schmidt E., Zillikens D.. 2013; Pemphigoid diseases. Lancet381:320–332 [CrossRef][PubMed]
    [Google Scholar]
  123. Schwarz M., Murphy P. M.. 2001; Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-κB and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol167:505–513 [CrossRef][PubMed]
    [Google Scholar]
  124. Shavit I., Shehadeh N., Zmora O., Avidor I., Etzioni A.. 1999; Severe necrotizing otitis and varicella associated with transient neutrophil chemotactic defect. Isr Med Assoc J1:60–61[PubMed]
    [Google Scholar]
  125. Shepard L. W., Yang M., Xie P., Browning D. D., Voyno-Yasenetskaya T., Kozasa T., Ye R. D.. 2001; Constitutive activation of NF-κB and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus involve Gα13 and RhoA. J Biol Chem276:45979–45987 [CrossRef][PubMed]
    [Google Scholar]
  126. Shi K., Hayashida K., Kaneko M., Hashimoto J., Tomita T., Lipsky P. E., Yoshikawa H., Ochi T.. 2001; Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J Immunol166:650–655 [CrossRef][PubMed]
    [Google Scholar]
  127. Shibata D., Weiss L. M.. 1992; Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol140:769–774[PubMed]
    [Google Scholar]
  128. Siakallis G., Spandidos D. A., Sourvinos G.. 2009; Herpesviridae and novel inhibitors. Antivir Ther14:1051–1064 [CrossRef][PubMed]
    [Google Scholar]
  129. Smith M. S., Bentz G. L., Alexander J. S., Yurochko A. D.. 2004; Human cytomegalovirus induces monocyte differentiation and migration as a strategy for dissemination and persistence. J Virol78:4444–4453 [CrossRef][PubMed]
    [Google Scholar]
  130. Soria G., Ben-Baruch A.. 2008; The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett267:271–285 [CrossRef][PubMed]
    [Google Scholar]
  131. Soulier J., Grollet L., Oksenhendler E., Cacoub P., Cazals-Hatem D., Babinet P., d'Agay M. F., Clauvel J. P., Raphael M.. 1995; Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood86:1276–1280[PubMed]
    [Google Scholar]
  132. Stapleton L. K., Arnolds K. L., Lares A. P., Devito T. M., Spencer J. V.. 2012; Receptor chimeras demonstrate that the C-terminal domain of the human cytomegalovirus US27 gene product is necessary and sufficient for intracellular receptor localization. Virol J9:42 [CrossRef][PubMed]
    [Google Scholar]
  133. Steain M., Gowrishankar K., Rodriguez M., Slobedman B., Abendroth A.. 2011; Upregulation of CXCL10 in human dorsal root ganglia during experimental and natural varicella-zoster virus infection. J Virol85:626–631 [CrossRef][PubMed]
    [Google Scholar]
  134. Stebbing J., Portsmouth S., Bower M.. 2003; Insights into the molecular biology and sero-epidemiology of Kaposi's sarcoma. Curr Opin Infect Dis16:25–31 [CrossRef][PubMed]
    [Google Scholar]
  135. Stern J. L., Slobedman B.. 2008; Human cytomegalovirus latent infection of myeloid cells directs monocyte migration by up-regulating monocyte chemotactic protein-1. J Immunol180:6577–6585 [CrossRef][PubMed]
    [Google Scholar]
  136. Straschewski S., Patrone M., Walther P., Gallina A., Mertens T., Frascaroli G.. 2011; Protein pUL128 of human cytomegalovirus is necessary for monocyte infection and blocking of migration. J Virol85:5150–5158 [CrossRef][PubMed]
    [Google Scholar]
  137. Streblow D. N., Soderberg-Naucler C., Vieira J., Smith P., Wakabayashi E., Ruchti F., Mattison K., Altschuler Y., Nelson J. A.. 1999; The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell99:511–520 [CrossRef][PubMed]
    [Google Scholar]
  138. Streblow D. N., Orloff S. L., J A.. 2001; Do pathogens accelerate atherosclerosis?. J Nutr131:2798S–2804S[PubMed]
    [Google Scholar]
  139. Tadagaki K., Nakano K., Yamanishi K.. 2005; Human herpesvirus 7 open reading frames U12 and U51 encode functional β-chemokine receptors. J Virol79:7068–7076 [CrossRef][PubMed]
    [Google Scholar]
  140. Tadagaki K., Yamanishi K., Mori Y.. 2007; Reciprocal roles of cellular chemokine receptors and human herpesvirus 7-encoded chemokine receptors, U12 and U51. J Gen Virol88:1423–1428 [CrossRef][PubMed]
    [Google Scholar]
  141. Tadagaki K., Tudor D., Gbahou F., Tschische P., Waldhoer M., Bomsel M., Jockers R., Kamal M.. 2012; Human cytomegalovirus-encoded UL33 and UL78 heteromerize with host CCR5 and CXCR4 impairing their HIV coreceptor activity. Blood119:4908–4918 [CrossRef][PubMed]
    [Google Scholar]
  142. Tang H., Serada S., Kawabata A., Ota M., Hayashi E., Naka T., Yamanishi K., Mori Y.. 2013; CD134 is a cellular receptor specific for human herpesvirus-6B entry. Proc Natl Acad Sci U S A110:9096–9099 [CrossRef][PubMed]
    [Google Scholar]
  143. Teicher B. A., Fricker S. P.. 2010; CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res16:2927–2931[CrossRef]
    [Google Scholar]
  144. Touitou R., Hickabottom M., Parker G., Crook T., Allday M. J.. 2001; Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C. J Virol75:7749–7755 [CrossRef][PubMed]
    [Google Scholar]
  145. Toussirot E., Roudier J.. 2008; Epstein-Barr virus in autoimmune diseases. Best Pract Res Clin Rheumatol22:883–896 [CrossRef][PubMed]
    [Google Scholar]
  146. Tschische P., Tadagaki K., Kamal M., Jockers R., Waldhoer M.. 2011; Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol82:610–619 [CrossRef][PubMed]
    [Google Scholar]
  147. Turner M. D., Nedjai B., Hurst T., Pennington D. J.. 2014; Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta1843:2563–2582 [CrossRef][PubMed]
    [Google Scholar]
  148. van den Berg J. S., van Zeijl J. H., Rotteveel J. J., Melchers W. J., Gabreëls F. J., Galama J. M.. 1999; Neuroinvasion by human herpesvirus type 7 in a case of exanthem subitum with severe neurologic manifestations. Neurology52:1077–1079 [CrossRef][PubMed]
    [Google Scholar]
  149. Van Raemdonck K., Van den Steen P. E., Liekens S., Van Damme J., Struyf S.. 2015; CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev26:311–327 [CrossRef][PubMed]
    [Google Scholar]
  150. Varani S., Frascaroli G., Homman-Loudiyi M., Feld S., Landini M. P., Söderberg-Nauclér C.. 2005; Human cytomegalovirus inhibits the migration of immature dendritic cells by down-regulating cell-surface CCR1 and CCR5. J Leukoc Biol77:219–228 [CrossRef][PubMed]
    [Google Scholar]
  151. Vazquez M. I., Catalan-Dibene J., Zlotnik A.. 2015; B cells responses and cytokine production are regulated by their immune microenvironment. Cytokine74:318–326 [CrossRef][PubMed]
    [Google Scholar]
  152. Viejo-Borbolla A., Martinez-Martín N., Nel H. J., Rueda P., Martín R., Blanco S., Arenzana-Seisdedos F., Thelen M., Fallon P. G., Alcamí A.. 2012; Enhancement of chemokine function as an immunomodulatory strategy employed by human herpesviruses. PLoS Pathog8:e1002497 [CrossRef][PubMed]
    [Google Scholar]
  153. Vomaske J., Melnychuk R. M., Smith P. P., Powell J., Hall L., DeFilippis V., Früh K., Smit M., Schlaepfer D. D., other authors. 2009; Differential ligand binding to a human cytomegalovirus chemokine receptor determines cell type-specific motility. PLoS Pathog5:e1000304 [CrossRef][PubMed]
    [Google Scholar]
  154. Wagner C. S., Walther-Jallow L., Buentke E., Ljunggren H. G., Achour A., Chambers B. J.. 2008; Human cytomegalovirus-derived protein UL18 alters the phenotype and function of monocyte-derived dendritic cells. J Leukoc Biol83:56–63 [CrossRef][PubMed]
    [Google Scholar]
  155. Waltenberger J.. 2007; Stress testing at the cellular and molecular level to unravel cellular dysfunction and growth factor signal transduction defects: what molecular cell biology can learn from cardiology. Thromb Haemost98:975–979[PubMed]
    [Google Scholar]
  156. Wang D., Bresnahan W., Shenk T.. 2004a; Human cytomegalovirus encodes a highly specific RANTES decoy receptor. Proc Natl Acad Sci U S A101:16642–16647 [CrossRef][PubMed]
    [Google Scholar]
  157. Wang J. F., Liu Z. Y., Anand A. R., Zhang X., Brown L. F., Dezube B. J., Gill P., Ganju R. K.. 2004b; Alpha-chemokine-mediated signal transduction in human Kaposi's sarcoma spindle cells. Biochim Biophys Acta1691:129–139 [CrossRef][PubMed]
    [Google Scholar]
  158. Ward K. N.. 2005; Human herpesviruses-6 and -7 infections. Curr Opin Infect Dis18:247–252 [CrossRef][PubMed]
    [Google Scholar]
  159. Weber K. S., Gröne H. J., Röcken M., Klier C., Gu S., Wank R., Proudfoot A. E., Nelson P. J., Weber C.. 2001; Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur J Immunol31:2458–2466 [CrossRef][PubMed]
    [Google Scholar]
  160. Weinreich M. A., Hogquist K. A.. 2008; Thymic emigration: when and how T cells leave home. J Immunol181:2265–2270 [CrossRef][PubMed]
    [Google Scholar]
  161. Weiss H.. 2004; Epidemiology of herpes simplex virus type 2 infection in the developing world. Herpes11:(Suppl. 1)24A–35A
    [Google Scholar]
  162. Wilson E., Butcher E. C.. 2004; CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med200:805–809 [CrossRef][PubMed]
    [Google Scholar]
  163. Wu J., Xu Y., Mo D., Huang P., Sun R., Huang L., Pan S., Xu J.. 2014; Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6 promotes cell proliferation and migration by upregulating DNMT1 via STAT3 activation. PLoS One9:e93478 [CrossRef][PubMed]
    [Google Scholar]
  164. Xia T., O'Hara A., Araujo I., Barreto J., Carvalho E., Sapucaia J. B., Ramos J. C., Luz E., Pedroso C., other authors. 2008; EBV microRNAs in primary lymphomas and targeting of CXCL-11 by ebv-mir-BHRF1-3. Cancer Res68:1436–1442 [CrossRef][PubMed]
    [Google Scholar]
  165. Xu Y., Ganem D.. 2007; Induction of chemokine production by latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells. J Gen Virol88:46–50 [CrossRef][PubMed]
    [Google Scholar]
  166. Xu F., Sternberg M. R., Kottiri B. J., McQuillan G. M., Lee F. K., Nahmias A. J., Berman S. M., Markowitz L. E.. 2006; Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. J Am Med Assoc296:964–973 [CrossRef][PubMed]
    [Google Scholar]
  167. Yamanishi K., Shiraki K., Kondo T., Okuno T., Takahashi M., Asano Y., Kurata T.. 1988; Identification of human herpesvirus-6 as a causal agent for exanthem subitum. Lancet331:1065–1067 [CrossRef][PubMed]
    [Google Scholar]
  168. Yasukawa M., Hasegawa A., Sakai I., Ohminami H., Arai J., Kaneko S., Yakushijin Y., Maeyama K., Nakashima H.. 1999; Down-regulation of CXCR4 by human herpesvirus 6 (HHV-6) and HHV-7.J. J Immunol162:5417–5422[PubMed]
    [Google Scholar]
  169. Yoshida M., Yamada M.. 2006; [Morphology of human alpha-herpesviruses]. Nihon Rinsho64:(Suppl. 3)121–126 (in Japanese).[PubMed]
    [Google Scholar]
  170. Young L. S., Rickinson A. B.. 2004; Epstein-Barr virus: 40 years on. Nat Rev Cancer4:757–768 [CrossRef][PubMed]
    [Google Scholar]
  171. Zhao L., Xia J., Wang X., Xu F.. 2014; Transcriptional regulation of CCL20 expression. Microbes Infect16:864–870[CrossRef]
    [Google Scholar]
  172. Zhou J., Xiang Y., Yoshimura T., Chen K., Gong W., Huang J., Zhou Y., Yao X., Bian X., Wang J. M.. 2014; The role of chemoattractant receptors in shaping the tumor microenvironment. BioMed Res Int2014:751392 [CrossRef][PubMed]
    [Google Scholar]
  173. Zou P., Isegawa Y., Nakano K., Haque M., Horiguchi Y., Yamanishi K.. 1999; Human herpesvirus 6 open reading frame U83 encodes a functional chemokine. J Virol73:5926–5933[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000370
Loading
/content/journal/jgv/10.1099/jgv.0.000370
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error