Pro-inflammatory cytokine dysregulation is associated with novel avian influenza A (H7N9) virus in primary human macrophages Free

Abstract

Since March 2013, more than 500 laboratory-confirmed human H7N9 influenza A virus infection cases have been recorded, with a case fatality rate of more than 30 %. Clinical research has shown that cytokine and chemokine dysregulation contributes to the pathogenicity of the H7N9 virus. Here, we investigated cytokine profiles in primary human macrophages infected with the novel H7N9 virus, using cytokine antibody arrays. The levels of several pro-inflammatory cytokines, particularly TNF-α, were increased in H7N9-infected macrophages. Induction of the transcriptional and translational levels of the pro-inflammatory cytokines by H7N9 virus seemed to be intermediate between those induced by highly pathogenic avian H5N1 and pandemic human H1N1 viruses, which were detected by ELISA and real-time quantitative PCR, respectively. Additionally, compared with H5N1, the upregulation of pro-inflammatory cytokines caused by H7N9 infection occurred rapidly but mildly. Our results identified the overall profiles of cytokine and chemokine induction by the H7N9 influenza virus in an cell-culture model, and could provide potential therapeutic targets for the control of severe human H7N9 disease.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000357
2016-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/2/299.html?itemId=/content/journal/jgv/10.1099/jgv.0.000357&mimeType=html&fmt=ahah

References

  1. Arilahti V., Mäkelä S. M., Tynell J., Julkunen I., Österlund P. 2014; Novel avian influenza A (H7N9) virus induces impaired interferon responses in human dendritic cells. PLoS One 9: e96350 [CrossRef]
    [Google Scholar]
  2. Chan M. C., Chan R. W., Chan L. L., Mok C. K., Hui K. P., Fong J. H., Tao K. P., Poon L. L., Nicholls J. M., other authors. 2013; Tropism and innate host responses of a novel avian influenza A H7N9 virus: an analysis of ex-vivo and in-vitro cultures of the human respiratory tract. Lancet Respir Med 1:534–542 [View Article][PubMed]
    [Google Scholar]
  3. Cheung C. Y., Poon L. L., Lau A. S., Luk W., Lau Y. L., Shortridge K. F., Gordon S., Guan Y., Peiris J. S. 2002; Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?. Lancet 360:1831–1837 [View Article][PubMed]
    [Google Scholar]
  4. Chi Y., Zhu Y., Wen T., Cui L., Ge Y., Jiao Y., Wu T., Ge A., Ji H., other authors. 2013; Cytokine and chemokine levels in patients infected with the novel avian influenza A (H7N9) virus in China. J Infect Dis 208:1962–1967 [View Article][PubMed]
    [Google Scholar]
  5. Gao H. N., Lu H. Z., Cao B., Du B., Shang H., Gan J. H., Lu S. H., Yang Y. D., Fang Q., other authors. 2013a; Clinical findings in 111 cases of influenza A (H7N9) virus infection. N Engl J Med 368:2277–2285 [View Article][PubMed]
    [Google Scholar]
  6. Gao R., Cao B., Hu Y., Feng Z., Wang D., Hu W., Chen J., Jie Z., Qiu H., other authors. 2013b; Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897 [View Article][PubMed]
    [Google Scholar]
  7. Huang F. F., Barnes P. F., Feng Y., Donis R., Chroneos Z. C., Idell S., Allen T., Perez D. R., Whitsett J. A., other authors. 2011; GM-CSF in the lung protects against lethal influenza infection. Am J Respir Crit Care Med 184:259–268 [View Article][PubMed]
    [Google Scholar]
  8. Mok C. K., Lee H. H., Chan M. C., Sia S. F., Lestra M., Nicholls J. M., Zhu H., Guan Y., Peiris J. M. 2013; Pathogenicity of the novel A/H7N9 influenza virus in mice. MBio 4: e00362-13 [CrossRef]
    [Google Scholar]
  9. Osterholm M. T. 2005; Preparing for the next pandemic. N Engl J Med 352:1839–1842 [View Article][PubMed]
    [Google Scholar]
  10. Pauksen K., Linde A., Hammarström V., Sjölin J., Carneskog J., Jonsson G., Oberga G., Engelmann H., Ljungman P. 2000; Granulocyte–macrophage colony-stimulating factor as immunomodulating factor together with influenza vaccination in stem cell transplant patients. Clin Infect Dis 30:342–348 [View Article][PubMed]
    [Google Scholar]
  11. Peiris J. S. M., Yu W. C., Leung C. W., Cheung C. Y., Ng W. F., Nicholls J. M., Ng T. K., Chan K. H., Lai S. T., other authors. 2004; Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363:617–619 [View Article][PubMed]
    [Google Scholar]
  12. Peiris J. S., Cheung C. Y., Leung C. Y., Nicholls J. M. 2009; Innate immune responses to influenza A H5N1: friend or foe?. Trends Immunol 30:574–584 [View Article][PubMed]
    [Google Scholar]
  13. Sever-Chroneos Z., Murthy A., Davis J., Florence J. M., Kurdowska A., Krupa A., Tichelaar J. W., White M. R., Hartshorn K. L., other authors. 2011; GM-CSF modulates pulmonary resistance to influenza A infection. Antiviral Res 92:319–328 [View Article][PubMed]
    [Google Scholar]
  14. Shen Z., Chen Z., Li X., Xu L., Guan W., Cao Y., Hu Y., Zhang J. 2014; Host immunological response and factors associated with clinical outcome in patients with the novel influenza A H7N9 infection. Clin Microbiol Infect 20:O493–O500 [CrossRef]
    [Google Scholar]
  15. Tumpey T. M., García-Sastre A., Taubenberger J. K., Palese P., Swayne D. E., Pantin-Jackwood M. J., Schultz-Cherry S., Solórzano A., Van Rooijen N., other authors. 2005; Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J Virol 79:14933–14944 [View Article][PubMed]
    [Google Scholar]
  16. Wang H., Feng Z., Shu Y., Yu H., Zhou L., Zu R., Huai Y., Dong J., Bao C., other authors. 2008; Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet 371:1427–1434 [View Article][PubMed]
    [Google Scholar]
  17. Wang Z., Zhang A., Wan Y., Liu X., Qiu C., Xi X., Ren Y., Wang J., Dong Y., other authors. 2014; Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc Natl Acad Sci U S A 111:769–774 [View Article][PubMed]
    [Google Scholar]
  18. WHO 2015; WHO Risk Assessment of Human Infections with Avian Influenza A(H7N9) Virus. Geneva: World Health Organization; http://www.who.int/influenza/human_animal_interface/influenza_h7n9/RiskAssessment_H7N9_23Feb20115.pdf
    [Google Scholar]
  19. Yu H., Cowling B. J., Feng L., Lau E. H., Liao Q., Tsang T. K., Peng Z., Wu P., Liu F., other authors. 2013; Human infection with avian influenza A H7N9 virus: an assessment of clinical severity. Lancet 382:138–145 [View Article][PubMed]
    [Google Scholar]
  20. Zhang Y., Zhang Q., Gao Y., He X., Kong H., Jiang Y., Guan Y., Xia X., Shu Y., other authors. 2012; Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J Virol 86:9666–9674 [View Article][PubMed]
    [Google Scholar]
  21. Zhang Q., Shi J., Deng G., Guo J., Zeng X., He X., Kong H., Gu C., Li X., other authors. 2013; H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 341:410–414 [View Article][PubMed]
    [Google Scholar]
  22. Zhou J., Wang D., Gao R., Zhao B., Song J., Qi X., Zhang Y., Shi Y., Yang L., other authors. 2013; Biological features of novel avian influenza A (H7N9) virus. Nature 499:500–503 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000357
Loading
/content/journal/jgv/10.1099/jgv.0.000357
Loading

Data & Media loading...

Most cited Most Cited RSS feed