1887

Abstract

Viruses of intermediate virulence are defined as isolates causing an intermediate morbidity/mortality rate in a specific animal model system, involving specific host and inoculation parameters (e.g. dose and route). Therefore, variable disease phenotype may exist between animals that develop severe disease or die and those that are asymptomatic or survive after infection with these isolates. There may also be variability amongst animals within each of these subsets. Such potential variability may confound the use of time-point sacrifice experiments to investigate pathogenesis of this subset of virus strains, as uniformity in disease outcome is a fundamental assumption for time-course sacrifice experiments. In the current study, we examined the disease phenotype, neuropathology, neural infection and glial cell activity in moribund/dead and surviving Swiss white (CD-1) mice after intraperitoneal infection with various Australian flaviviruses, including West Nile virus (WNV) strains of intermediate virulence (WNV and WNV), and highly virulent Murray Valley encephalitis virus (MVEV) isolates. We identified notable intragroup variation in the end-point disease in mice infected with either WNV strain, but to a lesser extent in mice infected with MVEV strains. The variable outcomes associated with WNV infection suggest that pathogenesis investigations using time-point sacrifice of WNV-infected mice may not be the best approach, as the assumption of uniformity in outcomes is violated. Our study has therefore highlighted a previously unacknowledged challenge to investigating pathogenesis of virus isolates of intermediate virulence. We have also set a precedent for routine examination of the disease phenotype in moribund/dead and surviving mice during survival challenge experiments.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000356
2016-02-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/2/366.html?itemId=/content/journal/jgv/10.1099/jgv.0.000356&mimeType=html&fmt=ahah

References

  1. Adams S. C., Broom A. K., Sammels L. M., Hartnett A. C., Howard M. J., Coelen R. J., Mackenzie J. S., Hall R. A.. 1995; Glycosylation and antigenic variation among Kunjin virus isolates. Virology206:49–56 [CrossRef][PubMed]
    [Google Scholar]
  2. Angenvoort J., Brault A. C., Bowen R. A., Groschup M. H.. 2013; West Nile viral infection of equids. Vet Microbiol167:168–180 [CrossRef][PubMed]
    [Google Scholar]
  3. Beasley D. W., Li L., Suderman M. T., Barrett A. D.. 2002; Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology296:17–23 [CrossRef][PubMed]
    [Google Scholar]
  4. Bielefeldt-Ohmann H., Smirnova N. P., Tolnay A. E., Webb B. T., Antoniazzi A. Q., van Campen H., Hansen T. R.. 2012; Neuro-invasion by a ‘Trojan Horse’ strategy and vasculopathy during intrauterine flavivirus infection. Int J Exp Pathol93:24–33 [CrossRef][PubMed]
    [Google Scholar]
  5. Bingham J., Payne J., Harper J., Frazer L., Eastwood S., Wilson S., Lowther S., Lunt R., Warner S., other authors. 2014; Evaluation of a mouse model for the West Nile virus group for the purpose of determining viral pathotypes. J Gen Virol95:1221–1232 [CrossRef][PubMed]
    [Google Scholar]
  6. Clark D. C., Lobigs M., Lee E., Howard M. J., Clark K., Blitvich B. J., Hall R. A.. 2007; In situ reactions of monoclonal antibodies with a viable mutant of Murray Valley encephalitis virus reveal an absence of dimeric NS1 protein. J Gen Virol88:1175–1183 [CrossRef][PubMed]
    [Google Scholar]
  7. Contag C. H., Bachmann M. H.. 2002; Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng4:235–260 [CrossRef][PubMed]
    [Google Scholar]
  8. Cross R. W., Fenton K. A., Geisbert J. B., Ebihara H., Mire C. E., Geisbert T. W.. 2015a; Comparison of the pathogenesis of the Angola and Ravn strains of Marburg Virus in the outbred guinea pig model. J Infect Dis212:(Suppl 2)S258–S270 [CrossRef][PubMed]
    [Google Scholar]
  9. Cross R. W., Fenton K. A., Geisbert J. B., Mire C. E., Geisbert T. W.. 2015b; Modeling the disease course of Zaire ebolavirus Infection in the outbred guinea pig. J Infect Dis212:(Suppl 2)S305–S315 [CrossRef][PubMed]
    [Google Scholar]
  10. Donadieu E., Lowenski S., Servely J. L., Laloy E., Lilin T., Nowotny N., Richardson J., Zientara S., Lecollinet S., Coulpier M.. 2013; Comparison of the neuropathology induced by two West Nile virus strains. PLoS One8:e84473 [CrossRef][PubMed]
    [Google Scholar]
  11. Fratkin J. D., Leis A. A., Stokic D. S., Slavinski S. A., Geiss R. W.. 2004; Spinal cord neuropathology in human West Nile virus infection. Arch Pathol Lab Med128:533–537[PubMed]
    [Google Scholar]
  12. Frost M. J., Zhang J., Edmonds J. H., Prow N. A., Gu X., Davis R., Hornitzky C., Arzey K. E., Finlaison D., other authors. 2012; Characterization of virulent West Nile virus Kunjin strain, Australia, 2011. Emerg Infect Dis18:792–800 [CrossRef][PubMed]
    [Google Scholar]
  13. Garcia-Tapia D., Hassett D. E., Mitchell W.J., Jr, Johnson G. C., Kleiboeker S. B.. 2007; West Nile virus encephalitis: sequential histopathological and immunological events in a murine model of infection. J Neurovirol13:130–138 [CrossRef][PubMed]
    [Google Scholar]
  14. Graham J. B., Thomas S., Swarts J., McMillan A. A., Ferris M. T., Suthar M. S., Treuting P. M., Ireton R., Gale M. Jr, Lund J. M.. 2015; Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes. MBio6:e00493–e00415 [CrossRef][PubMed]
    [Google Scholar]
  15. Guarner J., Shieh W. J., Hunter S., Paddock C. D., Morken T., Campbell G. L., Marfin A. A., Zaki S. R.. 2004; Clinicopathologic study and laboratory diagnosis of 23 cases with West Nile virus encephalomyelitis. Hum Pathol35:983–990 [CrossRef][PubMed]
    [Google Scholar]
  16. Jubelt B., Gallez-Hawkins G., Narayan O., Johnson R. T.. 1980; Pathogenesis of human poliovirus infection in mice. I. Clinical and pathological studies. J Neuropathol Exp Neurol39:138–148 [CrossRef][PubMed]
    [Google Scholar]
  17. Lobigs M., Marshall I. D., Weir R. C., Dalgarno L.. 1986; Genetic differentiation of Murray Valley encephalitis virus in Australia and Papua New Guinea. Aust J Exp Biol Med Sci64:571–585 [CrossRef][PubMed]
    [Google Scholar]
  18. Lobigs M., Marshall I. D., Weir R. C., Dalgarno L.. 1988; Murray Valley encephalitis virus field strains from Australia and Papua New Guinea: studies on the sequence of the major envelope protein gene and virulence for mice. Virology165:245–255 [CrossRef][PubMed]
    [Google Scholar]
  19. Mandl J. N., Liou R., Klauschen F., Vrisekoop N., Monteiro J. P., Yates A. J., Huang A. Y., Germain R. N.. 2012; Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naive CD4+ and CD8+T cells. Proc Natl Acad Sci U S A109:18036–18041 [CrossRef][PubMed]
    [Google Scholar]
  20. Mandl J. N., Torabi-Parizi P., Germain R. N.. 2014; Visualization and dynamic analysis of host-pathogen interactions. Curr Opin Immunol29:8–15 [CrossRef][PubMed]
    [Google Scholar]
  21. McMinn P. C., Dalgarno L., Weir R. C.. 1996; A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroinvasiveness in the tissues of Swiss mice after peripheral inoculation. Virology220:414–423 [CrossRef][PubMed]
    [Google Scholar]
  22. Miura T. A., Travanty E. A., Oko L., Bielefeldt-Ohmann H., Weiss S. R., Beauchemin N., Holmes K. V.. 2008; The spike glycoprotein of murine coronavirus MHV-JHM mediates receptor-independent infection and spread in the central nervous systems of Ceacam1a − / −  mice. J Virol82:755–763 [CrossRef][PubMed]
    [Google Scholar]
  23. Monath T. P., Cropp C. B., Bowen G. S., Kemp G. E., Mitchell C. J., Gardner J. J.. 1980; Variation in virulence for mice and rhesus monkeys among St. Louis encephalitis virus strains of different origin. Am J Trop Med Hyg29:948–962[PubMed]
    [Google Scholar]
  24. Morrey J. D., Siddharthan V., Wang H., Hall J. O.. 2012; Respiratory insufficiency correlated strongly with mortality of rodents infected with West Nile virus. PLoS One7:e38672 [CrossRef][PubMed]
    [Google Scholar]
  25. Mucker E. M., Chapman J., Huzella L. M., Huggins J. W., Shamblin J., Robinson C. G., Hensley L. E.. 2015; Susceptibility of marmosets (Callithrix jacchus) to monkeypox virus: a low dose prospective model for monkeypox and smallpox disease. PLoS One10:e0131742 [CrossRef][PubMed]
    [Google Scholar]
  26. Nagata N., Iwata-Yoshikawa N., Hayasaka D., Sato Y., Kojima A., Kariwa H., Takashima I., Takasaki T., Kurane I., other authors. 2015; The pathogenesis of 3 neurotropic flaviviruses in a mouse model depends on the route of neuroinvasion after viremia. J Neuropathol Exp Neurol74:250–260 [CrossRef][PubMed]
    [Google Scholar]
  27. Paxinos G., Franklin K. B. J.. 2004; The Mouse Brain in Stereotaxis Coordinates London: Elsevier;
    [Google Scholar]
  28. Petersen L. R., Brault A. C., Nasci R. S.. 2013; West Nile virus: review of the literature. JAMA310:308–315 [CrossRef][PubMed]
    [Google Scholar]
  29. Pol J. M., Gielkens A. L., van Oirschot J. T.. 1989; Comparative pathogenesis of three strains of pseudorabies virus in pigs. Microb Pathog7:361–371 [CrossRef][PubMed]
    [Google Scholar]
  30. Prow N. A., May F. J., Westlake D. J., Hurrelbrink R. J., Biron R. M., Leung J. Y., McMinn P. C., Clark D. C., Mackenzie J. S., other authors. 2011; Determinants of attenuation in the envelope protein of the flavivirus Alfuy. J Gen Virol92:2286–2296 [CrossRef][PubMed]
    [Google Scholar]
  31. Prow N. A., Setoh Y. X., Biron R. M., Sester D. P., Kim K. S., Hobson-Peters J., Hall R. A., Bielefeldt-Ohmann H.. 2014; The West Nile virus-like flavivirus Koutango is highly virulent in mice due to delayed viral clearance and the induction of a poor neutralizing antibody response. J Virol88:9947–9962 [CrossRef][PubMed]
    [Google Scholar]
  32. Rautenschlein S., Yeh H. Y., Sharma J. M.. 2003; Comparative immunopathogenesis of mild, intermediate, and virulent strains of classic infectious bursal disease virus. Avian Dis47:66–78 [CrossRef][PubMed]
    [Google Scholar]
  33. Segar T. M., Kasckow J. W., Welge J. A., Herman J. P.. 2009; Heterogeneity of neuroendocrine stress responses in aging rat strains. Physiol Behav96:6–11 [CrossRef][PubMed]
    [Google Scholar]
  34. Shrestha B., Gottlieb D., Diamond M. S.. 2003; Infection and injury of neurons by West Nile encephalitis virus. J Virol77:13203–13213 [CrossRef][PubMed]
    [Google Scholar]
  35. Tolnay A. E., Baskin C. R., Tumpey T. M., Sabourin P. J., Sabourin C. L., Long J. P., Pyles J. A., Albrecht R. A., García-Sastre A., other authors. 2010; Extrapulmonary tissue responses in cynomolgus macaques (Macaca fascicularis) infected with highly pathogenic avian influenza A (H5N1) virus. Arch Virol155:905–914 [CrossRef][PubMed]
    [Google Scholar]
  36. Zhao K., Gu M., Zhong L., Duan Z., Zhang Y., Zhu Y., Zhao G., Zhao M., Chen Z., other authors. 2013; Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Vet Microbiol163:351–357 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000356
Loading
/content/journal/jgv/10.1099/jgv.0.000356
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error