1887

Abstract

In this study we assessed the ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to replicate and induce innate immunity in human monocyte-derived macrophages and dendritic cells (MDDCs), and compared it with severe acute respiratory syndrome coronavirus (SARS-CoV). Assessments of viral protein and RNA levels in infected cells showed that both viruses were impaired in their ability to replicate in these cells. Some induction of IFN-λ1, CXCL10 and MxA mRNAs in both macrophages and MDDCs was seen in response to MERS-CoV infection, but almost no such induction was observed in response to SARS-CoV infection. ELISA and Western blot assays showed clear production of CXCL10 and MxA in MERS-CoV-infected macrophages and MDDCs. Our data suggest that SARS-CoV and MERS-CoV replicate poorly in human macrophages and MDDCs, but MERS-CoV is nonetheless capable of inducing a readily detectable host innate immune response. Our results highlight a clear difference between the viruses in activating host innate immune responses in macrophages and MDDCs, which may contribute to the pathogenesis of infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000351
2016-02-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/2/344.html?itemId=/content/journal/jgv/10.1099/jgv.0.000351&mimeType=html&fmt=ahah

References

  1. Adney D. R., van Doremalen N., Brown V. R., Bushmaker T., Scott D., de Wit E., Bowen R. A., Munster V. J. 2014; Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg Infect Dis 20:1999–2005 [View Article][PubMed]
    [Google Scholar]
  2. Azhar E. I., El-Kafrawy S. A., Farraj S. A., Hassan A. M., Al-Saeed M. S., Hashem A. M., Madani T. A. 2014; Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 370:2499–2505 [View Article][PubMed]
    [Google Scholar]
  3. Bergamaschi A., Pancino G. 2010; Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 7:31 [View Article][PubMed]
    [Google Scholar]
  4. Bosch B. J., van der Zee R., de Haan C. A., Rottier P. J. 2003; The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77:8801–8811 [View Article][PubMed]
    [Google Scholar]
  5. Burkard C., Verheije M. H., Wicht O., van Kasteren S. I., van Kuppeveld F. J., Haagmans B. L., Pelkmans L., Rottier P. J., Bosch B. J., de Haan C. A. 2014; Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 10:e1004502 [View Article][PubMed]
    [Google Scholar]
  6. Chan J. F., Chan K. H., Choi G. K., To K. K., Tse H., Cai J. P., Yeung M. L., Cheng V. C., Chen H., other authors. 2013; Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J Infect Dis 207:1743–1752 [View Article][PubMed]
    [Google Scholar]
  7. Cheng V. C. C., Lau S. K. P., Woo P. C. Y., Yuen K. Y. 2007; Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 20:660–694 [View Article][PubMed]
    [Google Scholar]
  8. Chu H., Zhou J., Wong B. H., Li C., Cheng Z. S., Lin X., Poon V. K., Sun T., Lau C. C., other authors. 2014; Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology 454–455:197–205 [View Article][PubMed]
    [Google Scholar]
  9. Collins A. R. 1998; Human macrophages are susceptible to coronavirus OC43. Adv Exp Med Biol 440:635–639 [View Article][PubMed]
    [Google Scholar]
  10. Corman V. M., Eckerle I., Bleicker T., Zaki A., Landt O., Eschbach-Bludau M., van Boheemen S., Gopal R., Ballhause M. 2012; Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill 17:3–8[PubMed]
    [Google Scholar]
  11. Corman V. M., Ithete N. L., Richards L. R., Schoeman M. C., Preiser W., Drosten C., Drexler J. F. 2014; Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J Virol 88:11297–11303 [View Article][PubMed]
    [Google Scholar]
  12. de Groot R. J., Baker S. C., Baric R. S., Brown C. S., Drosten C., Enjuanes L., Fouchier R. A. M., Galiano M., Gorbalenya A. E., other authors. 2013; Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 87:7790–7792 [View Article][PubMed]
    [Google Scholar]
  13. DeDiego M. L., Nieto-Torres J. L., Jimenez-Guardeño J. M., Regla-Nava J. A., Castaño-Rodriguez C., Fernandez-Delgado R., Usera F., Enjuanes L. 2014; Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res 194:124–137 [View Article][PubMed]
    [Google Scholar]
  14. Drosten C., Günther S., Preiser W., van der Werf S., Brodt H. R., Becker S., Rabenau H., Panning M., Kolesnikova L., other authors. 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976 [View Article][PubMed]
    [Google Scholar]
  15. Faure E., Poissy J., Goffard A., Fournier C., Kipnis E., Titecat M., Bortolotti P., Martinez L., Dubucquoi S., other authors. 2014; Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside?. PLoS One 9:e88716 [View Article][PubMed]
    [Google Scholar]
  16. Frieman M., Yount B., Heise M., Kopecky-Bromberg S. A., Palese P., Baric R. S. 2007; Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81:9812–9824 [View Article][PubMed]
    [Google Scholar]
  17. Funk C. J., Wang J., Ito Y., Travanty E. A., Voelker D. R., Holmes K. V., Mason R. J. 2012; Infection of human alveolar macrophages by human coronavirus strain 229E. J Gen Virol 93:494–503 [View Article][PubMed]
    [Google Scholar]
  18. Gierer S., Bertram S., Kaup F., Wrensch F., Heurich A., Krämer-Kühl A., Welsch K., Winkler M., Meyer B., other authors. 2013; The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87:5502–5511 [View Article][PubMed]
    [Google Scholar]
  19. Haagmans B. L., Al Dhahiry S. H., Reusken C. B., Raj V. S., Galiano M., Myers R., Godeke G. J., Jonges M., Farag E., other authors. 2014; Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis 14:140–145 [View Article][PubMed]
    [Google Scholar]
  20. Hui D. S., Memish Z. A., Zumla A. 2014; Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med 20:233–241 [View Article][PubMed]
    [Google Scholar]
  21. Ithete N. L., Stoffberg S., Corman V. M., Cottontail V. M., Richards L. R., Schoeman M. C., Drosten C., Drexler J. F., Preiser W. 2013; Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis 19:1697–1699 [View Article][PubMed]
    [Google Scholar]
  22. Josset L., Menachery V. D., Gralinski L. E., Agnihothram S., Sova P., Carter V. S., Yount B. L., Graham R. L., Baric R. S., Katze M. G. 2013; Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. MBio 4:e00165–15 [View Article][PubMed]
    [Google Scholar]
  23. Kopecky-Bromberg S. A., Martínez-Sobrido L., Frieman M., Baric R. A., Palese P. 2007; Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81:548–557 [View Article][PubMed]
    [Google Scholar]
  24. Kopf M., Schneider C., Nobs S. P. 2015; The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16:36–44 [View Article][PubMed]
    [Google Scholar]
  25. Lambeir A. M., Durinx C., Scharpé S., De Meester I. 2003; Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40:209–294 [View Article][PubMed]
    [Google Scholar]
  26. Lau S. K., Lau C. C., Chan K. H., Li C. P., Chen H., Jin D. Y., Chan J. F., Woo P. C., Yuen K. Y. 2013; Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol 94:2679–2690 [View Article][PubMed]
    [Google Scholar]
  27. Law H. K., Cheung C. Y., Ng H. Y., Sia S. F., Chan Y. O., Luk W., Nicholls J. M., Peiris J. S., Lau Y. L. 2005; Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 106:2366–2374 [View Article][PubMed]
    [Google Scholar]
  28. Lehtonen A., Ahlfors H., Veckman V., Miettinen M., Lahesmaa R., Julkunen I. 2007; Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J Leukoc Biol 82:710–720 [View Article][PubMed]
    [Google Scholar]
  29. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K., other authors. 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [View Article][PubMed]
    [Google Scholar]
  30. Matthews K. L., Coleman C. M., van der Meer Y., Snijder E. J., Frieman M. B. 2014; The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol 95:874–882 [View Article][PubMed]
    [Google Scholar]
  31. Memish Z. A., Mishra N., Olival K. J., Fagbo S. F., Kapoor V., Epstein J. H., Alhakeem R., Durosinloun A., Al Asmari M., other authors. 2013; Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis 19:1819–1823 [View Article][PubMed]
    [Google Scholar]
  32. Meyer B., Müller M. A., Corman V. M., Reusken C. B., Ritz D., Godeke G. J., Lattwein E., Kallies S., Siemens A., other authors. 2014; Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis 20:552–559 [View Article][PubMed]
    [Google Scholar]
  33. Millet J. K., Whittaker G. R. 2014; Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 111:15214–15219 [View Article][PubMed]
    [Google Scholar]
  34. Minakshi R., Padhan K., Rani M., Khan N., Ahmad F., Jameel S. 2009; The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4:e8342 [View Article][PubMed]
    [Google Scholar]
  35. Moltedo B., Li W., Yount J. S., Moran T. M. 2011; Unique type I interferon responses determine the functional fate of migratory lung dendritic cells during influenza virus infection. PLoS Pathog 7:e1002345 [View Article][PubMed]
    [Google Scholar]
  36. Niemeyer D., Zillinger T., Muth D., Zielecki F., Horvath G., Suliman T., Barchet W., Weber F., Drosten C., Müller M. A. 2013; Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol 87:12489–12495 [View Article][PubMed]
    [Google Scholar]
  37. Osterlund P., Veckman V., Sirén J., Klucher K. M., Hiscott J., Matikainen S., Julkunen I. 2005; Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol 79:9608–9617 [View Article][PubMed]
    [Google Scholar]
  38. Osterlund P., Pirhonen J., Ikonen N., Rönkkö E., Strengell M., Mäkelä S. M., Broman M., Hamming O. J., Hartmann R., other authors. 2010; Pandemic H1N1 2009 influenza A virus induces weak cytokine responses in human macrophages and dendritic cells and is highly sensitive to the antiviral actions of interferons. J Virol 84:1414–1422 [View Article][PubMed]
    [Google Scholar]
  39. Pirhonen J., Sareneva T., Kurimoto M., Julkunen I., Matikainen S. 1999; Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway. J Immunol 162:7322–7329[PubMed]
    [Google Scholar]
  40. Poissy J., Goffard A., Parmentier-Decrucq E., Favory R., Kauv M., Kipnis E., Mathieu D., Guery B. MERS-CoV Biology Group 2014; Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases. J Clin Virol 61:275–278 [View Article][PubMed]
    [Google Scholar]
  41. Raj V. S., Mou H., Smits S. L., Dekkers D. H. W., Müller M. A., Dijkman R., Muth D., Demmers J. A. A., Zaki A., other authors. 2013; Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–254 [View Article][PubMed]
    [Google Scholar]
  42. Raj V. S., Farag E. A., Reusken C. B., Lamers M. M., Pas S. D., Voermans J., Smits S. L., Osterhaus A. D., Al-Mawlawi N., other authors. 2014; Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014. Emerg Infect Dis 20:1339–1342 [View Article][PubMed]
    [Google Scholar]
  43. Reusken C. B., Haagmans B. L., Müller M. A., Gutierrez C., Godeke G. J., Meyer B., Muth D., Raj V. S., Smits-De Vries L., other authors. 2013; Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis 13:859–866 [View Article][PubMed]
    [Google Scholar]
  44. Reusken C.B.E.M., Messadi L., Feyisa A., Ularamu H., Godeke G. J., Danmarwa A., Dawo F., Jemli M., Melaku S., other authors. 2014; Geographic distribution of MERS coronavirus among dromedary camels, Africa. Emerg Infect Dis 20:1370–1374 [View Article][PubMed]
    [Google Scholar]
  45. Ronni T., Melén K., Malygin A., Julkunen I. 1993; Control of IFN-inducible MxA gene expression in human cells. J Immunol 150:1715–1726[PubMed]
    [Google Scholar]
  46. Scheuplein V. A., Seifried J., Malczyk A. H., Miller L., Höcker L., Vergara-Alert J., Dolnik O., Zielecki F., Becker B., other authors. 2015; High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J Virol 89:3859–3869 [View Article][PubMed]
    [Google Scholar]
  47. Shirato K., Kawase M., Matsuyama S. 2013; Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 87:12552–12561 [View Article][PubMed]
    [Google Scholar]
  48. Short K. R., Brooks A. G., Reading P. C., Londrigan S. L. 2012; The fate of influenza A virus after infection of human macrophages and dendritic cells. J Gen Virol 93:2315–2325 [View Article][PubMed]
    [Google Scholar]
  49. Siu K. L., Kok K. H., Ng M. H., Poon V. K., Yuen K. Y., Zheng B. J., Jin D. Y. 2009; Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3·TANK·TBK1/IKKepsilon complex. J Biol Chem 284:16202–16209 [View Article][PubMed]
    [Google Scholar]
  50. Siu K. L., Yeung M. L., Kok K. H., Yuen K. S., Kew C., Lui P. Y., Chan C. P., Tse H., Woo P. C., other authors. 2014; Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol 88:4866–4876 [View Article][PubMed]
    [Google Scholar]
  51. Spiegel M., Pichlmair A., Martínez-Sobrido L., Cros J., García-Sastre A., Haller O., Weber F. 2005; Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol 79:2079–2086 [View Article][PubMed]
    [Google Scholar]
  52. van Doremalen N., Miazgowicz K. L., Milne-Price S., Bushmaker T., Robertson S., Scott D., Kinne J., McLellan J. S., Zhu J., Munster V. J. 2014; Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol 88:9220–9232 [View Article][PubMed]
    [Google Scholar]
  53. Wang Q., Qi J., Yuan Y., Xuan Y., Han P., Wan Y., Ji W., Li Y., Wu Y., other authors. 2014; Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe 16:328–337 [View Article][PubMed]
    [Google Scholar]
  54. Yang Y., Zhang L., Geng H., Deng Y., Huang B., Guo Y., Zhao Z., Tan W. 2013; The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4:951–961 [View Article][PubMed]
    [Google Scholar]
  55. Yang X., Chen X., Bian G., Tu J., Xing Y., Wang Y., Chen Z. 2014; Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol 95:614–626 [View Article][PubMed]
    [Google Scholar]
  56. Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A.D.M.E., Fouchier R. A. M. 2012; Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820 [View Article][PubMed]
    [Google Scholar]
  57. Zhong J., Rao X., Deiuliis J., Braunstein Z., Narula V., Hazey J., Mikami D., Needleman B., Satoskar A. R., Rajagopalan S. 2013; A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 62:149–157 [View Article][PubMed]
    [Google Scholar]
  58. Zhou J., Chu H., Li C., Wong B. H., Cheng Z. S., Poon V. K., Sun T., Lau C. C., Wong K. K., other authors. 2014; Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 209:1331–1342[PubMed] [CrossRef]
    [Google Scholar]
  59. Ziegler T., Matikainen S., Rönkkö E., Osterlund P., Sillanpää M., Sirén J., Fagerlund R., Immonen M., Melén K., Julkunen I. 2005; Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol 79:13800–13805 [View Article][PubMed]
    [Google Scholar]
  60. Zielecki F., Weber M., Eickmann M., Spiegelberg L., Zaki A. M., Matrosovich M., Becker S., Weber F. 2013; Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. J Virol 87:5300–5304 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000351
Loading
/content/journal/jgv/10.1099/jgv.0.000351
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error