1887

Abstract

In this study we assessed the ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to replicate and induce innate immunity in human monocyte-derived macrophages and dendritic cells (MDDCs), and compared it with severe acute respiratory syndrome coronavirus (SARS-CoV). Assessments of viral protein and RNA levels in infected cells showed that both viruses were impaired in their ability to replicate in these cells. Some induction of IFN-λ1, CXCL10 and MxA mRNAs in both macrophages and MDDCs was seen in response to MERS-CoV infection, but almost no such induction was observed in response to SARS-CoV infection. ELISA and Western blot assays showed clear production of CXCL10 and MxA in MERS-CoV-infected macrophages and MDDCs. Our data suggest that SARS-CoV and MERS-CoV replicate poorly in human macrophages and MDDCs, but MERS-CoV is nonetheless capable of inducing a readily detectable host innate immune response. Our results highlight a clear difference between the viruses in activating host innate immune responses in macrophages and MDDCs, which may contribute to the pathogenesis of infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000351
2016-02-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/2/344.html?itemId=/content/journal/jgv/10.1099/jgv.0.000351&mimeType=html&fmt=ahah

References

  1. Adney D. R. , van Doremalen N. , Brown V. R. , Bushmaker T. , Scott D. , de Wit E. , Bowen R. A. , Munster V. J. . ( 2014;). Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg Infect Dis 20: 1999–2005 [CrossRef] [PubMed].
    [Google Scholar]
  2. Azhar E. I. , El-Kafrawy S. A. , Farraj S. A. , Hassan A. M. , Al-Saeed M. S. , Hashem A. M. , Madani T. A. . ( 2014;). Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 370: 2499–2505 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bergamaschi A. , Pancino G. . ( 2010;). Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology 7: 31 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bosch B. J. , van der Zee R. , de Haan C. A. , Rottier P. J. . ( 2003;). The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 77: 8801–8811 [CrossRef] [PubMed].
    [Google Scholar]
  5. Burkard C. , Verheije M. H. , Wicht O. , van Kasteren S. I. , van Kuppeveld F. J. , Haagmans B. L. , Pelkmans L. , Rottier P. J. , Bosch B. J. , de Haan C. A. . ( 2014;). Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 10: e1004502 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chan J. F. , Chan K. H. , Choi G. K. , To K. K. , Tse H. , Cai J. P. , Yeung M. L. , Cheng V. C. , Chen H. , other authors . ( 2013;). Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J Infect Dis 207: 1743–1752 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cheng V. C. C. , Lau S. K. P. , Woo P. C. Y. , Yuen K. Y. . ( 2007;). Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 20: 660–694 [CrossRef] [PubMed].
    [Google Scholar]
  8. Chu H. , Zhou J. , Wong B. H. , Li C. , Cheng Z. S. , Lin X. , Poon V. K. , Sun T. , Lau C. C. , other authors . ( 2014;). Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology 454–455: 197–205 [CrossRef] [PubMed].
    [Google Scholar]
  9. Collins A. R. . ( 1998;). Human macrophages are susceptible to coronavirus OC43. Adv Exp Med Biol 440: 635–639 [CrossRef] [PubMed].
    [Google Scholar]
  10. Corman V. M. , Eckerle I. , Bleicker T. , Zaki A. , Landt O. , Eschbach-Bludau M. , van Boheemen S. , Gopal R. , Ballhause M. . ( 2012;). Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill 17: 3–8 [PubMed].
    [Google Scholar]
  11. Corman V. M. , Ithete N. L. , Richards L. R. , Schoeman M. C. , Preiser W. , Drosten C. , Drexler J. F. . ( 2014;). Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J Virol 88: 11297–11303 [CrossRef] [PubMed].
    [Google Scholar]
  12. de Groot R. J. , Baker S. C. , Baric R. S. , Brown C. S. , Drosten C. , Enjuanes L. , Fouchier R. A. M. , Galiano M. , Gorbalenya A. E. , other authors . ( 2013;). Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 87: 7790–7792 [CrossRef] [PubMed].
    [Google Scholar]
  13. DeDiego M. L. , Nieto-Torres J. L. , Jimenez-Guardeño J. M. , Regla-Nava J. A. , Castaño-Rodriguez C. , Fernandez-Delgado R. , Usera F. , Enjuanes L. . ( 2014;). Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res 194: 124–137 [CrossRef] [PubMed].
    [Google Scholar]
  14. Drosten C. , Günther S. , Preiser W. , van der Werf S. , Brodt H. R. , Becker S. , Rabenau H. , Panning M. , Kolesnikova L. , other authors . ( 2003;). Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348: 1967–1976 [CrossRef] [PubMed].
    [Google Scholar]
  15. Faure E. , Poissy J. , Goffard A. , Fournier C. , Kipnis E. , Titecat M. , Bortolotti P. , Martinez L. , Dubucquoi S. , other authors . ( 2014;). Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside?. PLoS One 9: e88716 [CrossRef] [PubMed].
    [Google Scholar]
  16. Frieman M. , Yount B. , Heise M. , Kopecky-Bromberg S. A. , Palese P. , Baric R. S. . ( 2007;). Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol 81: 9812–9824 [CrossRef] [PubMed].
    [Google Scholar]
  17. Funk C. J. , Wang J. , Ito Y. , Travanty E. A. , Voelker D. R. , Holmes K. V. , Mason R. J. . ( 2012;). Infection of human alveolar macrophages by human coronavirus strain 229E. J Gen Virol 93: 494–503 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gierer S. , Bertram S. , Kaup F. , Wrensch F. , Heurich A. , Krämer-Kühl A. , Welsch K. , Winkler M. , Meyer B. , other authors . ( 2013;). The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87: 5502–5511 [CrossRef] [PubMed].
    [Google Scholar]
  19. Haagmans B. L. , Al Dhahiry S. H. , Reusken C. B. , Raj V. S. , Galiano M. , Myers R. , Godeke G. J. , Jonges M. , Farag E. , other authors . ( 2014;). Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis 14: 140–145 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hui D. S. , Memish Z. A. , Zumla A. . ( 2014;). Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med 20: 233–241 [CrossRef] [PubMed].
    [Google Scholar]
  21. Ithete N. L. , Stoffberg S. , Corman V. M. , Cottontail V. M. , Richards L. R. , Schoeman M. C. , Drosten C. , Drexler J. F. , Preiser W. . ( 2013;). Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis 19: 1697–1699 [CrossRef] [PubMed].
    [Google Scholar]
  22. Josset L. , Menachery V. D. , Gralinski L. E. , Agnihothram S. , Sova P. , Carter V. S. , Yount B. L. , Graham R. L. , Baric R. S. , Katze M. G. . ( 2013;). Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. MBio 4: e00165–15 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kopecky-Bromberg S. A. , Martínez-Sobrido L. , Frieman M. , Baric R. A. , Palese P. . ( 2007;). Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81: 548–557 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kopf M. , Schneider C. , Nobs S. P. . ( 2015;). The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16: 36–44 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lambeir A. M. , Durinx C. , Scharpé S. , De Meester I. . ( 2003;). Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40: 209–294 [CrossRef] [PubMed].
    [Google Scholar]
  26. Lau S. K. , Lau C. C. , Chan K. H. , Li C. P. , Chen H. , Jin D. Y. , Chan J. F. , Woo P. C. , Yuen K. Y. . ( 2013;). Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol 94: 2679–2690 [CrossRef] [PubMed].
    [Google Scholar]
  27. Law H. K. , Cheung C. Y. , Ng H. Y. , Sia S. F. , Chan Y. O. , Luk W. , Nicholls J. M. , Peiris J. S. , Lau Y. L. . ( 2005;). Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood 106: 2366–2374 [CrossRef] [PubMed].
    [Google Scholar]
  28. Lehtonen A. , Ahlfors H. , Veckman V. , Miettinen M. , Lahesmaa R. , Julkunen I. . ( 2007;). Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J Leukoc Biol 82: 710–720 [CrossRef] [PubMed].
    [Google Scholar]
  29. Li W. , Moore M. J. , Vasilieva N. , Sui J. , Wong S. K. , Berne M. A. , Somasundaran M. , Sullivan J. L. , Luzuriaga K. , other authors . ( 2003;). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450–454 [CrossRef] [PubMed].
    [Google Scholar]
  30. Matthews K. L. , Coleman C. M. , van der Meer Y. , Snijder E. J. , Frieman M. B. . ( 2014;). The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol 95: 874–882 [CrossRef] [PubMed].
    [Google Scholar]
  31. Memish Z. A. , Mishra N. , Olival K. J. , Fagbo S. F. , Kapoor V. , Epstein J. H. , Alhakeem R. , Durosinloun A. , Al Asmari M. , other authors . ( 2013;). Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis 19: 1819–1823 [CrossRef] [PubMed].
    [Google Scholar]
  32. Meyer B. , Müller M. A. , Corman V. M. , Reusken C. B. , Ritz D. , Godeke G. J. , Lattwein E. , Kallies S. , Siemens A. , other authors . ( 2014;). Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis 20: 552–559 [CrossRef] [PubMed].
    [Google Scholar]
  33. Millet J. K. , Whittaker G. R. . ( 2014;). Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 111: 15214–15219 [CrossRef] [PubMed].
    [Google Scholar]
  34. Minakshi R. , Padhan K. , Rani M. , Khan N. , Ahmad F. , Jameel S. . ( 2009;). The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4: e8342 [CrossRef] [PubMed].
    [Google Scholar]
  35. Moltedo B. , Li W. , Yount J. S. , Moran T. M. . ( 2011;). Unique type I interferon responses determine the functional fate of migratory lung dendritic cells during influenza virus infection. PLoS Pathog 7: e1002345 [CrossRef] [PubMed].
    [Google Scholar]
  36. Niemeyer D. , Zillinger T. , Muth D. , Zielecki F. , Horvath G. , Suliman T. , Barchet W. , Weber F. , Drosten C. , Müller M. A. . ( 2013;). Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol 87: 12489–12495 [CrossRef] [PubMed].
    [Google Scholar]
  37. Osterlund P. , Veckman V. , Sirén J. , Klucher K. M. , Hiscott J. , Matikainen S. , Julkunen I. . ( 2005;). Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol 79: 9608–9617 [CrossRef] [PubMed].
    [Google Scholar]
  38. Osterlund P. , Pirhonen J. , Ikonen N. , Rönkkö E. , Strengell M. , Mäkelä S. M. , Broman M. , Hamming O. J. , Hartmann R. , other authors . ( 2010;). Pandemic H1N1 2009 influenza A virus induces weak cytokine responses in human macrophages and dendritic cells and is highly sensitive to the antiviral actions of interferons. J Virol 84: 1414–1422 [CrossRef] [PubMed].
    [Google Scholar]
  39. Pirhonen J. , Sareneva T. , Kurimoto M. , Julkunen I. , Matikainen S. . ( 1999;). Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway. J Immunol 162: 7322–7329 [PubMed].
    [Google Scholar]
  40. Poissy J. , Goffard A. , Parmentier-Decrucq E. , Favory R. , Kauv M. , Kipnis E. , Mathieu D. , Guery B. . MERS-CoV Biology Group ( 2014;). Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases. J Clin Virol 61: 275–278 [CrossRef] [PubMed].
    [Google Scholar]
  41. Raj V. S. , Mou H. , Smits S. L. , Dekkers D. H. W. , Müller M. A. , Dijkman R. , Muth D. , Demmers J. A. A. , Zaki A. , other authors . ( 2013;). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495: 251–254 [CrossRef] [PubMed].
    [Google Scholar]
  42. Raj V. S. , Farag E. A. , Reusken C. B. , Lamers M. M. , Pas S. D. , Voermans J. , Smits S. L. , Osterhaus A. D. , Al-Mawlawi N. , other authors . ( 2014;). Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014. Emerg Infect Dis 20: 1339–1342 [CrossRef] [PubMed].
    [Google Scholar]
  43. Reusken C. B. , Haagmans B. L. , Müller M. A. , Gutierrez C. , Godeke G. J. , Meyer B. , Muth D. , Raj V. S. , Smits-De Vries L. , other authors . ( 2013;). Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis 13: 859–866 [CrossRef] [PubMed].
    [Google Scholar]
  44. Reusken C.B.E.M. , Messadi L. , Feyisa A. , Ularamu H. , Godeke G. J. , Danmarwa A. , Dawo F. , Jemli M. , Melaku S. , other authors . ( 2014;). Geographic distribution of MERS coronavirus among dromedary camels, Africa. Emerg Infect Dis 20: 1370–1374 [CrossRef] [PubMed].
    [Google Scholar]
  45. Ronni T. , Melén K. , Malygin A. , Julkunen I. . ( 1993;). Control of IFN-inducible MxA gene expression in human cells. J Immunol 150: 1715–1726 [PubMed].
    [Google Scholar]
  46. Scheuplein V. A. , Seifried J. , Malczyk A. H. , Miller L. , Höcker L. , Vergara-Alert J. , Dolnik O. , Zielecki F. , Becker B. , other authors . ( 2015;). High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J Virol 89: 3859–3869 [CrossRef] [PubMed].
    [Google Scholar]
  47. Shirato K. , Kawase M. , Matsuyama S. . ( 2013;). Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol 87: 12552–12561 [CrossRef] [PubMed].
    [Google Scholar]
  48. Short K. R. , Brooks A. G. , Reading P. C. , Londrigan S. L. . ( 2012;). The fate of influenza A virus after infection of human macrophages and dendritic cells. J Gen Virol 93: 2315–2325 [CrossRef] [PubMed].
    [Google Scholar]
  49. Siu K. L. , Kok K. H. , Ng M. H. , Poon V. K. , Yuen K. Y. , Zheng B. J. , Jin D. Y. . ( 2009;). Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3·TANK·TBK1/IKKepsilon complex. J Biol Chem 284: 16202–16209 [CrossRef] [PubMed].
    [Google Scholar]
  50. Siu K. L. , Yeung M. L. , Kok K. H. , Yuen K. S. , Kew C. , Lui P. Y. , Chan C. P. , Tse H. , Woo P. C. , other authors . ( 2014;). Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol 88: 4866–4876 [CrossRef] [PubMed].
    [Google Scholar]
  51. Spiegel M. , Pichlmair A. , Martínez-Sobrido L. , Cros J. , García-Sastre A. , Haller O. , Weber F. . ( 2005;). Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol 79: 2079–2086 [CrossRef] [PubMed].
    [Google Scholar]
  52. van Doremalen N. , Miazgowicz K. L. , Milne-Price S. , Bushmaker T. , Robertson S. , Scott D. , Kinne J. , McLellan J. S. , Zhu J. , Munster V. J. . ( 2014;). Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol 88: 9220–9232 [CrossRef] [PubMed].
    [Google Scholar]
  53. Wang Q. , Qi J. , Yuan Y. , Xuan Y. , Han P. , Wan Y. , Ji W. , Li Y. , Wu Y. , other authors . ( 2014;). Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe 16: 328–337 [CrossRef] [PubMed].
    [Google Scholar]
  54. Yang Y. , Zhang L. , Geng H. , Deng Y. , Huang B. , Guo Y. , Zhao Z. , Tan W. . ( 2013;). The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4: 951–961 [CrossRef] [PubMed].
    [Google Scholar]
  55. Yang X. , Chen X. , Bian G. , Tu J. , Xing Y. , Wang Y. , Chen Z. . ( 2014;). Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol 95: 614–626 [CrossRef] [PubMed].
    [Google Scholar]
  56. Zaki A. M. , van Boheemen S. , Bestebroer T. M. , Osterhaus A.D.M.E. , Fouchier R. A. M. . ( 2012;). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367: 1814–1820 [CrossRef] [PubMed].
    [Google Scholar]
  57. Zhong J. , Rao X. , Deiuliis J. , Braunstein Z. , Narula V. , Hazey J. , Mikami D. , Needleman B. , Satoskar A. R. , Rajagopalan S. . ( 2013;). A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes 62: 149–157 [CrossRef] [PubMed].
    [Google Scholar]
  58. Zhou J. , Chu H. , Li C. , Wong B. H. , Cheng Z. S. , Poon V. K. , Sun T. , Lau C. C. , Wong K. K. , other authors . ( 2014;). Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis 209: 1331–1342 [PubMed].[CrossRef]
    [Google Scholar]
  59. Ziegler T. , Matikainen S. , Rönkkö E. , Osterlund P. , Sillanpää M. , Sirén J. , Fagerlund R. , Immonen M. , Melén K. , Julkunen I. . ( 2005;). Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol 79: 13800–13805 [CrossRef] [PubMed].
    [Google Scholar]
  60. Zielecki F. , Weber M. , Eickmann M. , Spiegelberg L. , Zaki A. M. , Matrosovich M. , Becker S. , Weber F. . ( 2013;). Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. J Virol 87: 5300–5304 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000351
Loading
/content/journal/jgv/10.1099/jgv.0.000351
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error