1887

Abstract

In this study we assessed the ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to replicate and induce innate immunity in human monocyte-derived macrophages and dendritic cells (MDDCs), and compared it with severe acute respiratory syndrome coronavirus (SARS-CoV). Assessments of viral protein and RNA levels in infected cells showed that both viruses were impaired in their ability to replicate in these cells. Some induction of IFN-λ1, CXCL10 and MxA mRNAs in both macrophages and MDDCs was seen in response to MERS-CoV infection, but almost no such induction was observed in response to SARS-CoV infection. ELISA and Western blot assays showed clear production of CXCL10 and MxA in MERS-CoV-infected macrophages and MDDCs. Our data suggest that SARS-CoV and MERS-CoV replicate poorly in human macrophages and MDDCs, but MERS-CoV is nonetheless capable of inducing a readily detectable host innate immune response. Our results highlight a clear difference between the viruses in activating host innate immune responses in macrophages and MDDCs, which may contribute to the pathogenesis of infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000351
2016-02-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/2/344.html?itemId=/content/journal/jgv/10.1099/jgv.0.000351&mimeType=html&fmt=ahah

References

  1. Adney D. R., van Doremalen N., Brown V. R., Bushmaker T., Scott D., de Wit E., Bowen R. A., Munster V. J.. 2014; Replication and shedding of MERS-CoV in upper respiratory tract of inoculated dromedary camels. Emerg Infect Dis20:1999–2005 [CrossRef][PubMed]
    [Google Scholar]
  2. Azhar E. I., El-Kafrawy S. A., Farraj S. A., Hassan A. M., Al-Saeed M. S., Hashem A. M., Madani T. A.. 2014; Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med370:2499–2505 [CrossRef][PubMed]
    [Google Scholar]
  3. Bergamaschi A., Pancino G.. 2010; Host hindrance to HIV-1 replication in monocytes and macrophages. Retrovirology7:31 [CrossRef][PubMed]
    [Google Scholar]
  4. Bosch B. J., van der Zee R., de Haan C. A., Rottier P. J.. 2003; The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol77:8801–8811 [CrossRef][PubMed]
    [Google Scholar]
  5. Burkard C., Verheije M. H., Wicht O., van Kasteren S. I., van Kuppeveld F. J., Haagmans B. L., Pelkmans L., Rottier P. J., Bosch B. J., de Haan C. A.. 2014; Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog10:e1004502 [CrossRef][PubMed]
    [Google Scholar]
  6. Chan J. F., Chan K. H., Choi G. K., To K. K., Tse H., Cai J. P., Yeung M. L., Cheng V. C., Chen H., other authors. 2013; Differential cell line susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. J Infect Dis207:1743–1752 [CrossRef][PubMed]
    [Google Scholar]
  7. Cheng V. C. C., Lau S. K. P., Woo P. C. Y., Yuen K. Y.. 2007; Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev20:660–694 [CrossRef][PubMed]
    [Google Scholar]
  8. Chu H., Zhou J., Wong B. H., Li C., Cheng Z. S., Lin X., Poon V. K., Sun T., Lau C. C., other authors. 2014; Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology454–455:197–205 [CrossRef][PubMed]
    [Google Scholar]
  9. Collins A. R.. 1998; Human macrophages are susceptible to coronavirus OC43. Adv Exp Med Biol440:635–639 [CrossRef][PubMed]
    [Google Scholar]
  10. Corman V. M., Eckerle I., Bleicker T., Zaki A., Landt O., Eschbach-Bludau M., van Boheemen S., Gopal R., Ballhause M.. 2012; Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction. Euro Surveill17:3–8[PubMed]
    [Google Scholar]
  11. Corman V. M., Ithete N. L., Richards L. R., Schoeman M. C., Preiser W., Drosten C., Drexler J. F.. 2014; Rooting the phylogenetic tree of Middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat. J Virol88:11297–11303 [CrossRef][PubMed]
    [Google Scholar]
  12. de Groot R. J., Baker S. C., Baric R. S., Brown C. S., Drosten C., Enjuanes L., Fouchier R. A. M., Galiano M., Gorbalenya A. E., other authors. 2013; Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol87:7790–7792 [CrossRef][PubMed]
    [Google Scholar]
  13. DeDiego M. L., Nieto-Torres J. L., Jimenez-Guardeño J. M., Regla-Nava J. A., Castaño-Rodriguez C., Fernandez-Delgado R., Usera F., Enjuanes L.. 2014; Coronavirus virulence genes with main focus on SARS-CoV envelope gene. Virus Res194:124–137 [CrossRef][PubMed]
    [Google Scholar]
  14. Drosten C., Günther S., Preiser W., van der Werf S., Brodt H. R., Becker S., Rabenau H., Panning M., Kolesnikova L., other authors. 2003; Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med348:1967–1976 [CrossRef][PubMed]
    [Google Scholar]
  15. Faure E., Poissy J., Goffard A., Fournier C., Kipnis E., Titecat M., Bortolotti P., Martinez L., Dubucquoi S., other authors. 2014; Distinct immune response in two MERS-CoV-infected patients: can we go from bench to bedside?. PLoS One9:e88716 [CrossRef][PubMed]
    [Google Scholar]
  16. Frieman M., Yount B., Heise M., Kopecky-Bromberg S. A., Palese P., Baric R. S.. 2007; Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol81:9812–9824 [CrossRef][PubMed]
    [Google Scholar]
  17. Funk C. J., Wang J., Ito Y., Travanty E. A., Voelker D. R., Holmes K. V., Mason R. J.. 2012; Infection of human alveolar macrophages by human coronavirus strain 229E. J Gen Virol93:494–503 [CrossRef][PubMed]
    [Google Scholar]
  18. Gierer S., Bertram S., Kaup F., Wrensch F., Heurich A., Krämer-Kühl A., Welsch K., Winkler M., Meyer B., other authors. 2013; The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol87:5502–5511 [CrossRef][PubMed]
    [Google Scholar]
  19. Haagmans B. L., Al Dhahiry S. H., Reusken C. B., Raj V. S., Galiano M., Myers R., Godeke G. J., Jonges M., Farag E., other authors. 2014; Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation. Lancet Infect Dis14:140–145 [CrossRef][PubMed]
    [Google Scholar]
  20. Hui D. S., Memish Z. A., Zumla A.. 2014; Severe acute respiratory syndrome vs. the Middle East respiratory syndrome. Curr Opin Pulm Med20:233–241 [CrossRef][PubMed]
    [Google Scholar]
  21. Ithete N. L., Stoffberg S., Corman V. M., Cottontail V. M., Richards L. R., Schoeman M. C., Drosten C., Drexler J. F., Preiser W.. 2013; Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa. Emerg Infect Dis19:1697–1699 [CrossRef][PubMed]
    [Google Scholar]
  22. Josset L., Menachery V. D., Gralinski L. E., Agnihothram S., Sova P., Carter V. S., Yount B. L., Graham R. L., Baric R. S., Katze M. G.. 2013; Cell host response to infection with novel human coronavirus EMC predicts potential antivirals and important differences with SARS coronavirus. MBio4:e00165–15 [CrossRef][PubMed]
    [Google Scholar]
  23. Kopecky-Bromberg S. A., Martínez-Sobrido L., Frieman M., Baric R. A., Palese P.. 2007; Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol81:548–557 [CrossRef][PubMed]
    [Google Scholar]
  24. Kopf M., Schneider C., Nobs S. P.. 2015; The development and function of lung-resident macrophages and dendritic cells. Nat Immunol16:36–44 [CrossRef][PubMed]
    [Google Scholar]
  25. Lambeir A. M., Durinx C., Scharpé S., De Meester I.. 2003; Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci40:209–294 [CrossRef][PubMed]
    [Google Scholar]
  26. Lau S. K., Lau C. C., Chan K. H., Li C. P., Chen H., Jin D. Y., Chan J. F., Woo P. C., Yuen K. Y.. 2013; Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol94:2679–2690 [CrossRef][PubMed]
    [Google Scholar]
  27. Law H. K., Cheung C. Y., Ng H. Y., Sia S. F., Chan Y. O., Luk W., Nicholls J. M., Peiris J. S., Lau Y. L.. 2005; Chemokine up-regulation in SARS-coronavirus-infected, monocyte-derived human dendritic cells. Blood106:2366–2374 [CrossRef][PubMed]
    [Google Scholar]
  28. Lehtonen A., Ahlfors H., Veckman V., Miettinen M., Lahesmaa R., Julkunen I.. 2007; Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J Leukoc Biol82:710–720 [CrossRef][PubMed]
    [Google Scholar]
  29. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K., other authors. 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature426:450–454 [CrossRef][PubMed]
    [Google Scholar]
  30. Matthews K. L., Coleman C. M., van der Meer Y., Snijder E. J., Frieman M. B.. 2014; The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol95:874–882 [CrossRef][PubMed]
    [Google Scholar]
  31. Memish Z. A., Mishra N., Olival K. J., Fagbo S. F., Kapoor V., Epstein J. H., Alhakeem R., Durosinloun A., Al Asmari M., other authors. 2013; Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis19:1819–1823 [CrossRef][PubMed]
    [Google Scholar]
  32. Meyer B., Müller M. A., Corman V. M., Reusken C. B., Ritz D., Godeke G. J., Lattwein E., Kallies S., Siemens A., other authors. 2014; Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis20:552–559 [CrossRef][PubMed]
    [Google Scholar]
  33. Millet J. K., Whittaker G. R.. 2014; Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A111:15214–15219 [CrossRef][PubMed]
    [Google Scholar]
  34. Minakshi R., Padhan K., Rani M., Khan N., Ahmad F., Jameel S.. 2009; The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One4:e8342 [CrossRef][PubMed]
    [Google Scholar]
  35. Moltedo B., Li W., Yount J. S., Moran T. M.. 2011; Unique type I interferon responses determine the functional fate of migratory lung dendritic cells during influenza virus infection. PLoS Pathog7:e1002345 [CrossRef][PubMed]
    [Google Scholar]
  36. Niemeyer D., Zillinger T., Muth D., Zielecki F., Horvath G., Suliman T., Barchet W., Weber F., Drosten C., Müller M. A.. 2013; Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol87:12489–12495 [CrossRef][PubMed]
    [Google Scholar]
  37. Osterlund P., Veckman V., Sirén J., Klucher K. M., Hiscott J., Matikainen S., Julkunen I.. 2005; Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. J Virol79:9608–9617 [CrossRef][PubMed]
    [Google Scholar]
  38. Osterlund P., Pirhonen J., Ikonen N., Rönkkö E., Strengell M., Mäkelä S. M., Broman M., Hamming O. J., Hartmann R., other authors. 2010; Pandemic H1N1 2009 influenza A virus induces weak cytokine responses in human macrophages and dendritic cells and is highly sensitive to the antiviral actions of interferons. J Virol84:1414–1422 [CrossRef][PubMed]
    [Google Scholar]
  39. Pirhonen J., Sareneva T., Kurimoto M., Julkunen I., Matikainen S.. 1999; Virus infection activates IL-1 beta and IL-18 production in human macrophages by a caspase-1-dependent pathway. J Immunol162:7322–7329[PubMed]
    [Google Scholar]
  40. Poissy J., Goffard A., Parmentier-Decrucq E., Favory R., Kauv M., Kipnis E., Mathieu D., Guery B.. MERS-CoV Biology Group 2014; Kinetics and pattern of viral excretion in biological specimens of two MERS-CoV cases. J Clin Virol61:275–278 [CrossRef][PubMed]
    [Google Scholar]
  41. Raj V. S., Mou H., Smits S. L., Dekkers D. H. W., Müller M. A., Dijkman R., Muth D., Demmers J. A. A., Zaki A., other authors. 2013; Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature495:251–254 [CrossRef][PubMed]
    [Google Scholar]
  42. Raj V. S., Farag E. A., Reusken C. B., Lamers M. M., Pas S. D., Voermans J., Smits S. L., Osterhaus A. D., Al-Mawlawi N., other authors. 2014; Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014. Emerg Infect Dis20:1339–1342 [CrossRef][PubMed]
    [Google Scholar]
  43. Reusken C. B., Haagmans B. L., Müller M. A., Gutierrez C., Godeke G. J., Meyer B., Muth D., Raj V. S., Smits-De Vries L., other authors. 2013; Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis13:859–866 [CrossRef][PubMed]
    [Google Scholar]
  44. Reusken C.B.E.M., Messadi L., Feyisa A., Ularamu H., Godeke G. J., Danmarwa A., Dawo F., Jemli M., Melaku S., other authors. 2014; Geographic distribution of MERS coronavirus among dromedary camels, Africa. Emerg Infect Dis20:1370–1374 [CrossRef][PubMed]
    [Google Scholar]
  45. Ronni T., Melén K., Malygin A., Julkunen I.. 1993; Control of IFN-inducible MxA gene expression in human cells. J Immunol150:1715–1726[PubMed]
    [Google Scholar]
  46. Scheuplein V. A., Seifried J., Malczyk A. H., Miller L., Höcker L., Vergara-Alert J., Dolnik O., Zielecki F., Becker B., other authors. 2015; High secretion of interferons by human plasmacytoid dendritic cells upon recognition of Middle East respiratory syndrome coronavirus. J Virol89:3859–3869 [CrossRef][PubMed]
    [Google Scholar]
  47. Shirato K., Kawase M., Matsuyama S.. 2013; Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol87:12552–12561 [CrossRef][PubMed]
    [Google Scholar]
  48. Short K. R., Brooks A. G., Reading P. C., Londrigan S. L.. 2012; The fate of influenza A virus after infection of human macrophages and dendritic cells. J Gen Virol93:2315–2325 [CrossRef][PubMed]
    [Google Scholar]
  49. Siu K. L., Kok K. H., Ng M. H., Poon V. K., Yuen K. Y., Zheng B. J., Jin D. Y.. 2009; Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3·TANK·TBK1/IKKepsilon complex. J Biol Chem284:16202–16209 [CrossRef][PubMed]
    [Google Scholar]
  50. Siu K. L., Yeung M. L., Kok K. H., Yuen K. S., Kew C., Lui P. Y., Chan C. P., Tse H., Woo P. C., other authors. 2014; Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol88:4866–4876 [CrossRef][PubMed]
    [Google Scholar]
  51. Spiegel M., Pichlmair A., Martínez-Sobrido L., Cros J., García-Sastre A., Haller O., Weber F.. 2005; Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol79:2079–2086 [CrossRef][PubMed]
    [Google Scholar]
  52. van Doremalen N., Miazgowicz K. L., Milne-Price S., Bushmaker T., Robertson S., Scott D., Kinne J., McLellan J. S., Zhu J., Munster V. J.. 2014; Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol88:9220–9232 [CrossRef][PubMed]
    [Google Scholar]
  53. Wang Q., Qi J., Yuan Y., Xuan Y., Han P., Wan Y., Ji W., Li Y., Wu Y., other authors. 2014; Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26. Cell Host Microbe16:328–337 [CrossRef][PubMed]
    [Google Scholar]
  54. Yang Y., Zhang L., Geng H., Deng Y., Huang B., Guo Y., Zhao Z., Tan W.. 2013; The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell4:951–961 [CrossRef][PubMed]
    [Google Scholar]
  55. Yang X., Chen X., Bian G., Tu J., Xing Y., Wang Y., Chen Z.. 2014; Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol95:614–626 [CrossRef][PubMed]
    [Google Scholar]
  56. Zaki A. M., van Boheemen S., Bestebroer T. M., Osterhaus A.D.M.E., Fouchier R. A. M.. 2012; Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med367:1814–1820 [CrossRef][PubMed]
    [Google Scholar]
  57. Zhong J., Rao X., Deiuliis J., Braunstein Z., Narula V., Hazey J., Mikami D., Needleman B., Satoskar A. R., Rajagopalan S.. 2013; A potential role for dendritic cell/macrophage-expressing DPP4 in obesity-induced visceral inflammation. Diabetes62:149–157 [CrossRef][PubMed]
    [Google Scholar]
  58. Zhou J., Chu H., Li C., Wong B. H., Cheng Z. S., Poon V. K., Sun T., Lau C. C., Wong K. K., other authors. 2014; Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis209:1331–1342[PubMed][CrossRef]
    [Google Scholar]
  59. Ziegler T., Matikainen S., Rönkkö E., Osterlund P., Sillanpää M., Sirén J., Fagerlund R., Immonen M., Melén K., Julkunen I.. 2005; Severe acute respiratory syndrome coronavirus fails to activate cytokine-mediated innate immune responses in cultured human monocyte-derived dendritic cells. J Virol79:13800–13805 [CrossRef][PubMed]
    [Google Scholar]
  60. Zielecki F., Weber M., Eickmann M., Spiegelberg L., Zaki A. M., Matrosovich M., Becker S., Weber F.. 2013; Human cell tropism and innate immune system interactions of human respiratory coronavirus EMC compared to those of severe acute respiratory syndrome coronavirus. J Virol87:5300–5304 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000351
Loading
/content/journal/jgv/10.1099/jgv.0.000351
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error