1887

Abstract

Viral quasispecies (QS) have long been considered to affect the efficiency of hepatitis C virus (HCV) antiviral therapy, but a correlation between QS diversity and treatment outcomes has not been established conclusively. We previously measured HCV QS diversity by genome-wide quantification of high-resolution mutation load in HCV genotype 1a patients achieving a sustained virological response (1a/SVR) or a null response (1a/null). The current study extended this work into HCV 1a patients experiencing relapse (1a/relapse,  = 19) and genotype 2b patients with SVR (2b/SVR,  = 10). The mean mutation load per patient in 2b/SVR and 1a/relapse was similar, respectively, to 1a/SVR (517.6 ± 174.3 vs 524 ± 278.8 mutations,  = 0.95) and 1a/null (829.2 ± 282.8 vs 805.6 ± 270.7 mutations,  = 0.78). Notably, a deleterious mutation load, as indicated by the percentage of non-synonymous mutations, was highest in 2b/SVR (33.2 ± 8.5 %) as compared with 1a/SVR (23.6 ± 7.8 %,  = 0.002), 1a/null (18.2 ± 5.1 %,  = 1.9 × 10) or 1a/relapse (17.8 ± 5.3 %,  = 1.8 × 10). In the 1a/relapse group, continuous virus evolution was observed with excessive accumulation of a deleterious load (17.8 ± 5.3 % vs 35.4 ± 12.9 %,  = 3.5 × 10), supporting the functionality of Muller's ratchet in a treatment-induced population bottleneck. Taken together, the magnitude of HCV mutation load, particularly the deleterious mutation load, provides an evolutionary explanation for the emergence of multiple response patterns as well as an overall high SVR rate in HCV genotype 2 patients. Augmentation of Muller's ratchet represents a potential strategy to reduce or even eliminate viral relapse in HCV antiviral therapy.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000346
2016-02-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/2/334.html?itemId=/content/journal/jgv/10.1099/jgv.0.000346&mimeType=html&fmt=ahah

References

  1. Balagopal A., Thomas D. L., Thio C. L.. 2010; IL28B and the control of hepatitis C virus infection. Gastroenterology139:1865–1876 [CrossRef][PubMed]
    [Google Scholar]
  2. Chao L.. 1990; Fitness of RNA virus decreased by Muller's ratchet. Nature348:454–455 [CrossRef][PubMed]
    [Google Scholar]
  3. Clauset A., Shalizi C. R., Newman M. E. J.. 2009; Power-law distributions in empirical data. SIAM Rev51:661–703 [CrossRef]
    [Google Scholar]
  4. Darriba D., Taboada G. L., Doallo R., Posada D.. 2012; jModelTest 2: more models, new heuristics and parallel computing. Nat Methods9:772 [CrossRef][PubMed]
    [Google Scholar]
  5. Domingo E., Sheldon J., Perales C.. 2012; Viral quasispecies evolution. Microbiol Mol Biol Rev76:159–216 [CrossRef][PubMed]
    [Google Scholar]
  6. Drummond A. J., Rambaut A.. 2007; beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol7:214 [CrossRef][PubMed]
    [Google Scholar]
  7. Enomoto N., Sakuma I., Asahina Y., Kurosaki M., Murakami T., Yamamoto C., Ogura Y., Izumi N., Marumo F., Sato C.. 1996; Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med334:77–82 [CrossRef][PubMed]
    [Google Scholar]
  8. Eyre-Walker A., Keightley P. D., Smith N. G., Gaffney D.. 2002; Quantifying the slightly deleterious mutation model of molecular evolution. Mol Biol Evol19:2142–2149 [CrossRef][PubMed]
    [Google Scholar]
  9. Fan X., Di Bisceglie A. M.. 2010; RT-PCR amplification and cloning of large viral sequences. Methods Mol Biol630:139–149 [CrossRef][PubMed]
    [Google Scholar]
  10. Fan X., Mao Q., Zhou D., Lu Y., Xing J., Xu Y., Ray S. C., Di Bisceglie A. M.. 2009; High diversity of hepatitis C viral quasispecies is associated with early virological response in patients undergoing antiviral therapy. Hepatology50:1765–1772 [CrossRef][PubMed]
    [Google Scholar]
  11. Farci P., Quinti I., Farci S., Alter H. J., Strazzera R., Palomba E., Coiana A., Cao D., Casadei A. M., other authors. 2006; Evolution of hepatitis C viral quasispecies and hepatic injury in perinatally infected children followed prospectively. Proc Natl Acad Sci U S A103:8475–8480 [CrossRef][PubMed]
    [Google Scholar]
  12. Feld J. J., Hoofnagle J. H.. 2005; Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature436:967–972 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. 1983; Neutral Theory of Molecular Evolution. [CrossRef] Cambridge: Cambridge University Press;
    [Google Scholar]
  14. Larder B. A., Kohli A., Kellam P., Kemp S. D., Kronick M., Henfrey R. D.. 1993; Quantitative detection of HIV-1 drug resistance mutations by automated DNA sequencing. Nature365:671–673 [CrossRef][PubMed]
    [Google Scholar]
  15. Lee W. M., Dienstag J. L., Lindsay K. L., Lok A. S., Bonkovsky H. L., Shiffman M. L., Everson G. T., Di Bisceglie A. M., Morgan T. R., other authors. 2004; Evolution of the HALT-C trial: pegylated interferon as maintenance therapy for chronic hepatitis C in previous interferon nonresponders. Control Clin Trials25:472–492 [CrossRef][PubMed]
    [Google Scholar]
  16. Lemey P., Kosakovsky Pond S. L., Drummond A. J., Pybus O. G., Shapiro B., Barroso H., Taveira N., Rambaut A.. 2007; Synonymous substitution rates predict HIV disease progression as a result of underlying replication dynamics. PLOS Comput Biol3:e29 [CrossRef][PubMed]
    [Google Scholar]
  17. Li H., Sullivan D. G., Feuerborn N., McArdle S., Bekele K., Pal S., Yeh M., Carithers R. L., Perkins J. D., Gretch D. R.. 2010; Genetic diversity of hepatitis C virus predicts recurrent disease after liver transplantation. Virology402:248–255 [CrossRef][PubMed]
    [Google Scholar]
  18. Li H., Hughes A. L., Bano N., McArdle S., Livingston S., Deubner H., McMahon B. J., Townshend-Bulson L., McMahan R., other authors. 2011; Genetic diversity of near genome-wide hepatitis C virus sequences during chronic infection: evidence for protein structural conservation over time. PLoS One6:e19562 [CrossRef][PubMed]
    [Google Scholar]
  19. Lindenbach B. D., Rice C. M.. 2005; Unravelling hepatitis C virus replication from genome to function. Nature436:933–938 [CrossRef][PubMed]
    [Google Scholar]
  20. López-Labrador F. X., Ampurdanès S., Giménez-Barcons M., Guilera M., Costa J., Jiménez de Anta M. T., Sánchez-Tapias J. M., Rodés J., Sáiz J. C.. 1999; Relationship of the genomic complexity of hepatitis C virus with liver disease severity and response to interferon in patients with chronic HCV genotype 1b infection [correction of interferon]. Hepatology29:897–903 [CrossRef][PubMed]
    [Google Scholar]
  21. Lyra A. C., Fan X., Lang D. M., Yusim K., Ramrakhiani S., Brunt E. M., Korber B., Perelson A. S., Di Bisceglie A. M.. 2002; Evolution of hepatitis C viral quasispecies after liver transplantation. Gastroenterology123:1485–1493 [CrossRef][PubMed]
    [Google Scholar]
  22. Morishima C., Polyak S. J., Ray R., Doherty M. C., Di Bisceglie A. M., Malet P. F., Bonkovsky H. L., Sullivan D. G., Gretch D. R., other authors. 2006; Hepatitis C virus-specific immune responses and quasi-species variability at baseline are associated with nonresponse to antiviral therapy during advanced hepatitis C. J Infect Dis193:931–940 [CrossRef][PubMed]
    [Google Scholar]
  23. Ortega-Prieto A. M., Sheldon J., Grande-Pérez A., Tejero H., Gregori J., Quer J., Esteban J. I., Domingo E., Perales C.. 2013; Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS One8:e71039 [CrossRef][PubMed]
    [Google Scholar]
  24. Parker J., Rambaut A., Pybus O. G.. 2008; Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect Genet Evol8:239–246 [CrossRef][PubMed]
    [Google Scholar]
  25. Pawlotsky J. M.. 2015; Hepatitis C treatment: the data flood goes on—an update from the Liver Meeting 2014. Gastroenterology148:468–479 [CrossRef][PubMed]
    [Google Scholar]
  26. Pearlman B. L., Ehleben C., Saifee S.. 2007; Treatment extension to 72 weeks of peginterferon and ribavirin in hepatitis c genotype 1-infected slow responders. Hepatology46:1688–1694 [CrossRef][PubMed]
    [Google Scholar]
  27. Peck J. R.. 1994; A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics137:597–606[PubMed]
    [Google Scholar]
  28. Perales C., Beach N. M., Gallego I., Soria M. E., Quer J., Esteban J. I., Rice C., Domingo E., Sheldon J.. 2013; Response of hepatitis C virus to long-term passage in the presence of alpha interferon: multiple mutations and a common phenotype. J Virol87:7593–7607 [CrossRef][PubMed]
    [Google Scholar]
  29. Poordad F., Reddy K. R., Martin P.. 2008; Rapid virologic response: a new milestone in the management of chronic hepatitis C. Clin Infect Dis46:78–84 [CrossRef][PubMed]
    [Google Scholar]
  30. Pybus O. G., Rambaut A., Belshaw R., Freckleton R. P., Drummond A. J., Holmes E. C.. 2007; Phylogenetic evidence for deleterious mutation load in RNA viruses and its contribution to viral evolution. Mol Biol Evol24:845–852 [CrossRef][PubMed]
    [Google Scholar]
  31. Qin H., Shire N. J., Keenan E. D., Rouster S. D., Eyster M. E., Goedert J. J., Koziel M. J., Sherman K. E., Multicenter Hemophilia Cohort Study Group. 2005; HCV quasispecies evolution: association with progression to end-stage liver disease in hemophiliacs infected with HCV or HCV/HIV. Blood105:533–541 [CrossRef][PubMed]
    [Google Scholar]
  32. Sandres K., Dubois M., Pasquier C., Payen J. L., Alric L., Duffaut M., Vinel J. P., Pascal J. P., Puel J., Izopet J.. 2000; Genetic heterogeneity of hypervariable region 1 of the hepatitis C virus (HCV) genome and sensitivity of HCV to alpha interferon therapy. J Virol74:661–668 [CrossRef][PubMed]
    [Google Scholar]
  33. Sullivan D. G., Bruden D., Deubner H., McArdle S., Chung M., Christensen C., Hennessy T., Homan C., Williams J., other authors. 2007; Hepatitis C virus dynamics during natural infection are associated with long-term histological outcome of chronic hepatitis C disease. J Infect Dis196:239–248 [CrossRef][PubMed]
    [Google Scholar]
  34. Swofford D. L.. 2002; paup *. Phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates;
  35. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  36. Van Laethem K., Van Vaerenbergh K., Schmit J. C., Sprecher S., Hermans P., De Vroey V., Schuurman R., Harrer T., Witvrouw M., other authors. 1999; Phenotypic assays and sequencing are less sensitive than point mutation assays for detection of resistance in mixed HIV-1 genotypic populations. J Acquir Immune Defic Syndr22:107–118 [CrossRef][PubMed]
    [Google Scholar]
  37. Wang X. H., Netski D. M., Astemborski J., Mehta S. H., Torbenson M. S., Thomas D. L., Ray S. C.. 2007; Progression of fibrosis during chronic hepatitis C is associated with rapid virus evolution. J Virol81:6513–6522 [CrossRef][PubMed]
    [Google Scholar]
  38. Wang W., Zhang X., Xu Y., Weinstock G. M., Di Bisceglie A. M., Fan X.. 2014; High-resolution quantification of hepatitis C virus genome-wide mutation load and its correlation with the outcome of peginterferon-alpha2a and ribavirin combination therapy. PLoS One9:e100131 [CrossRef][PubMed]
    [Google Scholar]
  39. Wyles D. L., Ruane P. J., Sulkowski M. S., Dieterich D., Luetkemeyer A., Morgan T. R., Sherman K. E., Dretler R., Fishbein D., other authors. 2015; Daclatasvir plus sofosbuvir for HCV in patients coinfected with HIV-1. N Engl J Med373:714–725 [CrossRef][PubMed]
    [Google Scholar]
  40. Yang Z.. 2007; PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol24:1586–1591 [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang L., Jilg N., Shao R. X., Lin W., Fusco D. N., Zhao H., Goto K., Peng L. F., Chen W. C., Chung R. T.. 2011a; IL28B inhibits hepatitis C virus replication through the JAK-STAT pathway. J Hepatol55:289–298 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhang X., Ryu S. H., Xu Y., Elbaz T., Zekri A. R., Abdelaziz A. O., Abdel-Hamid M., Thiers V., Elena S. F., other authors. 2011b; The Core/E1 domain of hepatitis C virus genotype 4a in Egypt does not contain viral mutations or strains specific for hepatocellular carcinoma. J Clin Virol52:333–338 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000346
Loading
/content/journal/jgv/10.1099/jgv.0.000346
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error