1887

Abstract

Despite chronic hepatitis B virus (HBV) infection (CHB) being a leading cause of liver cirrhosis and cancer, HBV evolution during CHB is not fully understood. Recent studies have indicated that virus diversity progressively increases along the course of CHB and that some virus mutations correlate with severe liver conditions such as chronic hepatitis, cirrhosis and hepatocellular carcinoma. Using ultradeep sequencing (UDS) data from an intrafamilial case, we detected such mutations at low frequencies among three immunotolerant patients and at high frequencies in an inactive carrier. Furthermore, our analyses indicated that the HBV population from the seroconverter patient underwent many genetic changes in response to virus clearance. Together, these data indicate a potential use of UDS for developing non-invasive biomarkers for monitoring disease changes over time or in response to specific therapies. In addition, our analyses revealed that virus clearance seemed not to require the virus effective population size to decline. A detailed genetic analysis of the viral lineages arising during and after the clearance suggested that mutations at or close to critical elements of the core promoter (enhancer II, epsilon encapsidation signal, TA2, TA3 and direct repeat 1-hormone response element) might be responsible for a sustained replication. This hypothesis requires the decline in virus load to be explained by constant clearance of virus-producing hepatocytes, consistent with the sustained progress towards serious liver conditions experienced by many CHB patients.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000344
2016-02-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/2/435.html?itemId=/content/journal/jgv/10.1099/jgv.0.000344&mimeType=html&fmt=ahah

References

  1. Bedossa P., Poynard T. 1996; An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 24:289–93 [CrossRef]
    [Google Scholar]
  2. Bindewald E., Schneider T. D., Shapiro B. A. 2006; CorreLogo: an online server for 3D sequence logos of RNA and DNA alignments. Nucleic Acids Res 34:W405–W411 [View Article][PubMed]
    [Google Scholar]
  3. Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C. H., Xie D., Suchard M. A., Rambaut A., Drummond A. J. 2014; beast 2: a software platform for Bayesian evolutionary analysis. PLOS Comput Biol 10:e1003537 [View Article][PubMed]
    [Google Scholar]
  4. Buckwold V. E., Xu Z., Chen M., Yen T. S. B., Ou J.-H. 1996; Effects of a naturally occurring mutation in the hepatitis B virus basal core promoter on precore gene expression and viral replication. J Virol 70:5845–5851[PubMed][PubMed]
    [Google Scholar]
  5. Carman W. F., Boner W., Fattovich G., Colman K., Dornan E. S., Thursz M., Hadziyannis S. 1997; Hepatitis B virus core protein mutations are concentrated in B cell epitopes in progressive disease and in T helper cell epitopes during clinical remission. J Infect Dis 175:1093–1100 [View Article][PubMed]
    [Google Scholar]
  6. Cheng Y., Guindon S., Rodrigo A., Wee L. Y., Inoue M., Thompson A. J., Locarnini S., Lim S. G. 2013; Cumulative viral evolutionary changes in chronic hepatitis B virus infection precedes hepatitis B e antigen seroconversion. Gut 62:1347–1355 [View Article][PubMed]
    [Google Scholar]
  7. Chotiyaputta W., Lok A. S. 2009; Hepatitis B virus variants. Nat Rev Gastroenterol Hepatol 6:453–462 [View Article][PubMed]
    [Google Scholar]
  8. Felsenstein J. 2004 Inferring Phylogenies Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  9. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  10. Huse S. M., Huber J. A., Morrison H. G., Sogin M. L., Welch D. M. 2007; Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 8:R143 [View Article][PubMed]
    [Google Scholar]
  11. Jombart T., Balloux F., Dray S. 2010; adephylo: New tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26:1907–1909 [View Article][PubMed]
    [Google Scholar]
  12. Kass R. E., Raftery A. E. 1995; Bayes factors. J Am Stat Assoc 90:773–795 [View Article]
    [Google Scholar]
  13. Katoh K., Standley D. M. 2013; mafft multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780 [View Article][PubMed]
    [Google Scholar]
  14. Katoh K., Standley D. M. 2014; mafft: iterative refinement and additional methods. Methods Mol Biol 1079:131–146 [View Article][PubMed]
    [Google Scholar]
  15. Kembel S. W., Cowan P. D., Helmus M. R., Cornwell W. K., Morlon H., Ackerly D. D., Blomberg S. P., Webb C. O. 2010; Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464 [View Article][PubMed]
    [Google Scholar]
  16. Kohno K., Nishizono A., Terao H., Hiraga M., Mifune K. 2000; Reduced transcription and progeny virus production of hepatitis B virus containing an 8-bp deletion in basic core promoter. J Med Virol 61:15–22 [View Article][PubMed]
    [Google Scholar]
  17. Kramvis A., Kew M. C. 1999; The core promoter of hepatitis B virus. J Viral Hepat 6:415–427 [View Article][PubMed]
    [Google Scholar]
  18. Kwon H., Lok A. S. 2011; Hepatitis B therapy. Nat Rev Gastroenterol Hepatol 8:275–284[PubMed]
    [Google Scholar]
  19. Lim S. G., Cheng Y., Guindon S., Seet B. L., Lee L. Y., Hu P., Wasser S., Peter F. J., Tan T., other authors. 2007; Viral quasi-species evolution during hepatitis Be antigen seroconversion. Gastroenterology 133:951–958 [View Article][PubMed]
    [Google Scholar]
  20. Lin W. J., Li J., Lee Y. F., Yeh S. D., Altuwaijri S., Ou J. H., Chang C. 2003; Suppression of hepatitis B virus core promoter by the nuclear orphan receptor TR4. J Biol Chem 278:9353–9360 [View Article][PubMed]
    [Google Scholar]
  21. Malmassari S. L., Deng Q., Fontaine H., Houitte D., Rimlinger F., Thiers V., Maillere B., Pol S., Michel M. L. 2007; Impact of hepatitis B virus basic core promoter mutations on T cell response to an immunodominant HBx-derived epitope. Hepatology 45:1199–1209 [View Article][PubMed]
    [Google Scholar]
  22. Maydt J., Lengauer T. 2006; Recco: recombination analysis using cost optimization. Bioinformatics 22:1064–1071 [View Article][PubMed]
    [Google Scholar]
  23. McMahon B. J., Alward W. L., Hall D. B., Heyward W. L., Bender T. R., Francis D. P., Maynard J. E. 1985; Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. J Infect Dis 151:599–603 [View Article][PubMed]
    [Google Scholar]
  24. Moriyama K. 1997; Reduced antigen production by hepatitis B virus harbouring nucleotide deletions in the overlapping X gene and precore-core promoter. J Gen Virol 78:1479–1486 [View Article][PubMed]
    [Google Scholar]
  25. Osiowy C., Giles E., Tanaka Y., Mizokami M., Minuk G. Y. 2006; Molecular evolution of hepatitis B virus over 25 years. J Virol 80:10307–10314 [View Article][PubMed]
    [Google Scholar]
  26. Paradis E., Claude J., Strimmer K. 2004; ape: Analyses of Phylogenetics and Evolution in r language. Bioinformatics 20:289–290 [View Article][PubMed]
    [Google Scholar]
  27. Parekh S., Zoulim F., Ahn S. H., Tsai A., Li J., Kawai S., Khan N., Trépo C., Wands J., Tong S. 2003; Genome replication, virion secretion, and e antigen expression of naturally occurring hepatitis B virus core promoter mutants. J Virol 77:6601–6612 [View Article][PubMed]
    [Google Scholar]
  28. Price M. N., Dehal P. S., Arkin A. P. 2010; FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490 [View Article][PubMed]
    [Google Scholar]
  29. Schierup M. H., Hein J. 2000; Consequences of recombination on traditional phylogenetic analysis. Genetics 156:879–891[PubMed]
    [Google Scholar]
  30. Schliep K. P. 2011; phangorn: Phylogenetic analysis in R. Bioinformatics 27:592–593 [View Article][PubMed]
    [Google Scholar]
  31. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H., other authors. 2009; Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541 [View Article][PubMed]
    [Google Scholar]
  32. Schmieder R., Edwards R. 2011; Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864 [View Article][PubMed]
    [Google Scholar]
  33. Schneider T. D., Stephens R. M. 1990; Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100 [View Article][PubMed]
    [Google Scholar]
  34. Sede M., Laufer N., Ojeda D., Gun A., Cahn P., Quarleri J. 2013; Analysis of sequences of hepatitis C virus NS5A genotype 1 in HIV-coinfected patients with a null response to nitazoxanide or peg-interferon plus ribavirin. Arch Virol 158:1907–1915 [View Article][PubMed]
    [Google Scholar]
  35. Sede M., Lopez-Ledesma M., Frider B., Pozzati M., Campos R. H., Flichman D., Quarleri J. 2014; Hepatitis B virus depicts a high degree of conservation during the immune-tolerant phase in familiarly transmitted chronic hepatitis B infection: deep-sequencing and phylogenetic analysis. J Viral Hepat 21:650–661 [View Article][PubMed]
    [Google Scholar]
  36. Simmons M. P. 2014; A confounding effect of missing data on character conflict in maximum likelihood and Bayesian MCMC phylogenetic analyses. Mol Phylogenet Evol 80:267–280 [View Article][PubMed]
    [Google Scholar]
  37. Skums P., Dimitrova Z., Campo D. S., Vaughan G., Rossi L., Forbi J. C., Yokosawa J., Zelikovsky A., Khudyakov Y. 2012; Efficient error correction for next-generation sequencing of viral amplicons. BMC Bioinformatics 13:(Suppl. 10)S6 [View Article][PubMed]
    [Google Scholar]
  38. Tassopoulos N. C., Papaevangelou G. J., Sjogren M. H., Roumeliotou-Karayannis A., Gerin J. L., Purcell R. H. 1987; Natural history of acute hepatitis B surface antigen-positive hepatitis in Greek adults. Gastroenterology 92:1844–1850[PubMed]
    [Google Scholar]
  39. Warnow T. 2012; Standard maximum likelihood analyses of alignments with gaps can be statistically inconsistent. PLoS Curr 4:RRN1308 [View Article][PubMed]
    [Google Scholar]
  40. Webb C. O., Ackerly D. D., McPeek M. A., Donoghue M. J. 2002; Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505 [View Article]
    [Google Scholar]
  41. Wolda H. 1981; Similarity indices, sample size and diversity. Oecologia 50:296–302 [View Article]
    [Google Scholar]
  42. Yin J., Xie J., Liu S., Zhang H., Han L., Lu W., Shen Q., Xu G., Dong H., other authors. 2011; Association between the various mutations in viral core promoter region to different stages of hepatitis B, ranging of asymptomatic carrier state to hepatocellular carcinoma. Am J Gastroenterol 106:81–92 [View Article][PubMed]
    [Google Scholar]
  43. Zhang Q., Yin J., Zhang Y., Deng Y., Ji X., Du Y., Pu R., Han Y., Zhao J., other authors. 2013; HLA-DP polymorphisms affect the outcomes of chronic hepatitis B virus infections, possibly through interacting with viral mutations. J Virol 87:12176–12186 [View Article][PubMed]
    [Google Scholar]
  44. Zhou Y., Holmes E. C. 2007; Bayesian estimates of the evolutionary rate and age of hepatitis B virus. J Mol Evol 65:197–205 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000344
Loading
/content/journal/jgv/10.1099/jgv.0.000344
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error