1887

Abstract

Cytomegalovirus (CMV) is a ubiquitous virus, causing the most common congenital infection in humans, yet a vaccine against this virus is not available. Experimental studies of immunity against CMV in animal models of infection, such as the infection of mice with mouse CMV (MCMV), have relied mainly on parenteral infection protocols, although the virus naturally transmits by mucosal routes via body fluids. To characterize the biology of infections by mucosal routes, we compared the kinetics of virus replication, latent viral load and CD8 T-cell responses in lymphoid organs upon experimental intranasal (targeting the respiratory tract) and intragastric (targeting the digestive tract) infection with systemic intraperitoneal infection of two unrelated mouse strains. We observed that intranasal infection induced robust and long-term virus replication in the lungs and salivary glands but limited replication in the spleen. CD8 T-cell responses were somewhat weaker than upon intraperitoneal infection but showed similar kinetic profiles and phenotypes of antigen-specific cells. In contrast, intragastric infection resulted in abortive or poor virus replication in all tested organs and poor T-cell responses to the virus, especially at late times after infection. Consistent with the T-cell kinetics, the MCMV latent load was high in the lungs but low in the spleen of intranasally infected mice and lowest in all tested organs upon intragastric infection. In conclusion, we showed that intranasal but not intragastric infection of mice with MCMV represents a robust model to study the short- and long-term biology of CMV infection by a mucosal route.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000339
2016-01-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/185.html?itemId=/content/journal/jgv/10.1099/jgv.0.000339&mimeType=html&fmt=ahah

References

  1. Adler S. P.. 1989; Cytomegalovirus and child day care. Evidence for an increased infection rate among day-care workers. N Engl J Med321:1290–1296 [CrossRef][PubMed]
    [Google Scholar]
  2. Altman J. D., Moss P. A., Goulder P. J., Barouch D. H., McHeyzer-Williams M. G., Bell J. I., McMichael A. J., Davis M. M.. 1996; Phenotypic analysis of antigen-specific T lymphocytes. Science274:94–96 [CrossRef][PubMed]
    [Google Scholar]
  3. Appay V., Dunbar P. R., Callan M., Klenerman P., Gillespie G. M., Papagno L., Ogg G. S., King A., Lechner F.. other authors 2002; Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med8:379–385 [CrossRef][PubMed]
    [Google Scholar]
  4. Boppana S. B., Rivera L. B., Fowler K. B., Mach M., Britt W. J.. 2001; Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med344:1366–1371 [CrossRef][PubMed]
    [Google Scholar]
  5. Campbell A. E., Cavanaugh V. J., Slater J. S.. 2008; The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med Microbiol Immunol (Berl)197:205–213 [CrossRef][PubMed]
    [Google Scholar]
  6. Cannon M. J., Hyde T. B., Schmid D. S.. 2011; Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol21:240–255 [CrossRef][PubMed]
    [Google Scholar]
  7. Čičin-Šain L., Podlech J., Messerle M., Reddehase M. J., Koszinowski U. H.. 2005; Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol79:9492–9502 [CrossRef][PubMed]
    [Google Scholar]
  8. Čičin-Šain L., Sylwester A. W., Hagen S. I., Siess D. C., Currier N., Legasse A. W., Fischer M. B., Koudelka C. W., Axthelm M. K., other authors. 2011; Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. J Immunol187:1722–1732 [CrossRef][PubMed]
    [Google Scholar]
  9. Čičin-Šain L., Brien J. D., Uhrlaub J. L., Drabig A., Marandu T. F., Nikolich-Zugich J.. 2012; Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog8:e1002849 [CrossRef][PubMed]
    [Google Scholar]
  10. Diosi P., Babusceac L., Nevinglovschi O., Kun-Stoicu G.. 1967; Cytomegalovirus infection associated with pregnancy. Lancet290:1063–1066 [CrossRef][PubMed]
    [Google Scholar]
  11. Doom C. M., Hill A. B.. 2008; MHC class I immune evasion in MCMV infection. Med Microbiol Immunol (Berl)197:191–204 [CrossRef][PubMed]
    [Google Scholar]
  12. Dworsky M., Yow M., Stagno S., Pass R. F., Alford C.. 1983; Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics72:295–299[PubMed]
    [Google Scholar]
  13. Fowler K. B., Pass R. F.. 1991; Sexually transmitted diseases in mothers of neonates with congenital cytomegalovirus infection. J Infect Dis164:259–264 [CrossRef][PubMed]
    [Google Scholar]
  14. Fowler K. B., Stagno S., Pass R. F.. 2003; Maternal immunity and prevention of congenital cytomegalovirus infection. JAMA289:1008–1011 [CrossRef][PubMed]
    [Google Scholar]
  15. Griffiths P., Baraniak I., Reeves M.. 2015; The pathogenesis of human cytomegalovirus. J Pathol235:288–297 [CrossRef][PubMed]
    [Google Scholar]
  16. Hansen S. G., Vieville C., Whizin N., Coyne-Johnson L., Siess D. C., Drummond D. D., Legasse A. W., Axthelm M. K., Oswald K., other authors. 2009; Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med15:293–299 [CrossRef][PubMed]
    [Google Scholar]
  17. Holtappels R., Pahl-Seibert M. F., Thomas D., Reddehase M. J.. 2000; Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62Llo memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol74:11495–11503 [CrossRef][PubMed]
    [Google Scholar]
  18. Holtappels R., Thomas D., Podlech J., Reddehase M. J.. 2002; Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol76:151–164 [CrossRef][PubMed]
    [Google Scholar]
  19. Hsu K. M., Pratt J. R., Akers W. J., Achilefu S. I., Yokoyama W. M.. 2009; Murine cytomegalovirus displays selective infection of cells within hours after systemic administration. J Gen Virol90:33–43 [CrossRef][PubMed]
    [Google Scholar]
  20. Jordan M. C.. 1978; Interstitial pneumonia and subclinical infection after intranasal inoculation of murine cytomegalovirus. Infect Immun21:275–280[PubMed]
    [Google Scholar]
  21. Jordan S., Krause J., Prager A., Mitrovic M., Jonjic S., Koszinowski U. H., Adler B.. 2011; Virus progeny of murine cytomegalovirus bacterial artificial chromosome pSM3fr show reduced growth in salivary glands due to a fixed mutation of MCK-2. J Virol85:10346–10353 [CrossRef][PubMed]
    [Google Scholar]
  22. Karrer U., Sierro S., Wagner M., Oxenius A., Hengel H., Koszinowski U. H., Phillips R. E., Klenerman P.. 2003; Memory inflation: continuous accumulation of antiviral CD8+T cells over time. J Immunol170:2022–2029 [CrossRef][PubMed]
    [Google Scholar]
  23. Kenneson A., Cannon M. J.. 2007; Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol17:253–276 [CrossRef][PubMed]
    [Google Scholar]
  24. Kirby A. C., Coles M. C., Kaye P. M.. 2009; Alveolar macrophages transport pathogens to lung draining lymph nodes. J Immunol183:1983–1989 [CrossRef][PubMed]
    [Google Scholar]
  25. Knabel M., Franz T. J., Schiemann M., Wulf A., Villmow B., Schmidt B., Bernhard H., Wagner H., Busch D. H.. 2002; Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med8:631–637 [CrossRef][PubMed]
    [Google Scholar]
  26. Lemmermann N. A. W., Podlech J., Seckert C. K., Kropp K. A., Grzimek N. K. A., Reddehase M. J., Holtappels R.. 2010; CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. Methods Microbiol37:369–420 [CrossRef]
    [Google Scholar]
  27. Lemoine F. M., Humphries R. K., Abraham S. D., Krystal G., Eaves C. J.. 1988a; Partial characterization of a novel stromal cell-derived pre-B-cell growth factor active on normal and immortalized pre-B cells. Exp Hematol16:718–726[PubMed]
    [Google Scholar]
  28. Lemoine F. M., Krystal G., Humphries R. K., Eaves C. J.. 1988b; Autocrine production of pre-B-cell stimulating activity by a variety of transformed murine pre-B-cell lines. Cancer Res48:6438–6443[PubMed]
    [Google Scholar]
  29. Marco A. J., Domingo M., Ruberte J., Carretero A., Briones V., Dominguez L.. 1992; Lymphatic drainage of Listeria monocytogenes and Indian ink inoculated in the peritoneal cavity of the mouse. Lab Anim26:200–205 [CrossRef][PubMed]
    [Google Scholar]
  30. Morello C. S., Ye M., Hung S., Kelley L. A., Spector D. H.. 2005; Systemic priming-boosting immunization with a trivalent plasmid DNA and inactivated murine cytomegalovirus (MCMV) vaccine provides long-term protection against viral replication following systemic or mucosal MCMV challenge. J Virol79:159–175 [CrossRef][PubMed]
    [Google Scholar]
  31. Munks M. W., Cho K. S., Pinto A. K., Sierro S., Klenerman P., Hill A. B.. 2006; Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol177:450–458 [CrossRef][PubMed]
    [Google Scholar]
  32. O'Hara G. A., Welten S. P. M., Klenerman P., Arens R.. 2012; Memory T cell inflation: understanding cause and effect. Trends Immunol33:84–90 [CrossRef][PubMed]
    [Google Scholar]
  33. Pitcher C. J., Hagen S. I., Walker J. M., Lum R., Mitchell B. L., Maino V. C., Axthelm M. K., Picker L. J.. 2002; Development and homeostasis of T cell memory in rhesus macaque. J Immunol168:29–43 [CrossRef][PubMed]
    [Google Scholar]
  34. Ple C., Barrier M., Amniai L., Marquillies P., Bertout J., Tsicopoulos A., Walzer T., Lassalle P., Duez C.. 2010; Natural killer cells accumulate in lung-draining lymph nodes and regulate airway eosinophilia in a murine model of asthma. Scand J Immunol72:118–127 [CrossRef][PubMed]
    [Google Scholar]
  35. Podlech J., Holtappels R., Grzimek N. K., Reddehase M. J.. 2002; Animal models: murine cytomegalovirus. Methods Microbiol32:493–525 [CrossRef]
    [Google Scholar]
  36. Redeker A., Welten S. P., Arens R.. 2014; Viral inoculum dose impacts memory T-cell inflation. Eur J Immunol44:1046–1057 [CrossRef][PubMed]
    [Google Scholar]
  37. Redwood A. J., Shellam G. R., Smith L. M.. 2013; Molecular evolution of murine cytomegalovirus genomes. In Cytomegaloviruses: From Molecular Pathogenesis to Intervention pp23–37Edited by Reddehase M. J.. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  38. Saederup N., Aguirre S. A., Sparer T. E., Bouley D. M., Mocarski E. S.. 2001; Murine cytomegalovirus CC chemokine homolog MCK-2 (m131-129) is a determinant of dissemination that increases inflammation at initial sites of infection. J Virol75:9966–9976 [CrossRef][PubMed]
    [Google Scholar]
  39. Scalzo A. A., Lyons P. A., Fitzgerald N. A., Forbes C. A., Yokoyama W. M., Shellam G. R.. 1995; Genetic mapping of Cmv1 in the region of mouse chromosome 6 encoding the NK gene complex-associated loci Ly49 and musNKR-P1. Genomics27:435–441 [CrossRef][PubMed]
    [Google Scholar]
  40. Seckert C. K., Renzaho A., Tervo H. M., Krause C., Deegen P., Kühnapfel B., Reddehase M. J., Grzimek N. K.. 2009; Liver sinusoidal endothelial cells are a site of murine cytomegalovirus latency and reactivation. J Virol83:8869–8884 [CrossRef][PubMed]
    [Google Scholar]
  41. Seckert C. K., Griessl M., Büttner J. K., Scheller S., Simon C. O., Kropp K. A., Renzaho A., Kühnapfel B., Grzimek N. K., Reddehase M. J.. 2012; Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol (Berl)201:551–566 [CrossRef][PubMed]
    [Google Scholar]
  42. Shanley J. D., Thrall R. S., Forman S. J.. 1997; Murine cytomegalovirus replication in the lungs of athymic BALB/c nude mice. J Infect Dis175:309–315 [CrossRef][PubMed]
    [Google Scholar]
  43. Sierro S., Rothkopf R., Klenerman P.. 2005; Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur J Immunol35:1113–1123 [CrossRef][PubMed]
    [Google Scholar]
  44. Smith C. J., Turula H., Snyder C. M.. 2014; Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog10:e1004233 [CrossRef][PubMed]
    [Google Scholar]
  45. Snyder C. M., Cho K. S., Bonnett E. L., van Dommelen S., Shellam G. R., Hill A. B.. 2008; Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity29:650–659 [CrossRef][PubMed]
    [Google Scholar]
  46. Stagno S., Reynolds D. W., Pass R. F., Alford C. A.. 1980; Breast milk and the risk of cytomegalovirus infection. N Engl J Med302:1073–1076 [CrossRef][PubMed]
    [Google Scholar]
  47. Stahl F. R., Heller K., Halle S., Keyser K. A., Busche A., Marquardt A., Wagner K., Boelter J., Bischoff Y., other authors. 2013; Nodular inflammatory foci are sites of T cell priming and control of murine cytomegalovirus infection in the neonatal lung. PLoS Pathog9:e1003828 [CrossRef][PubMed]
    [Google Scholar]
  48. Stahl F. R., Keyser K. A., Heller K., Bischoff Y., Halle S., Wagner K., Messerle M., Förster R.. 2015; Mck2-dependent infection of alveolar macrophages promotes replication of MCMV in nodular inflammatory foci of the neonatal lung. Mucosal Immunol8:57–67 [CrossRef][PubMed]
    [Google Scholar]
  49. Vochem M., Hamprecht K., Jahn G., Speer C. P.. 1998; Transmission of cytomegalovirus to preterm infants through breast milk. Pediatr Infect Dis J17:53–58 [CrossRef][PubMed]
    [Google Scholar]
  50. Wu C. A., Paveglio S. A., Lingenheld E. G., Zhu L., Lefrançois L., Puddington L.. 2011; Transmission of murine cytomegalovirus in breast milk: a model of natural infection in neonates. J Virol85:5115–5124 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000339
Loading
/content/journal/jgv/10.1099/jgv.0.000339
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error