1887

Abstract

Cytomegalovirus (CMV) is a ubiquitous virus, causing the most common congenital infection in humans, yet a vaccine against this virus is not available. Experimental studies of immunity against CMV in animal models of infection, such as the infection of mice with mouse CMV (MCMV), have relied mainly on parenteral infection protocols, although the virus naturally transmits by mucosal routes via body fluids. To characterize the biology of infections by mucosal routes, we compared the kinetics of virus replication, latent viral load and CD8 T-cell responses in lymphoid organs upon experimental intranasal (targeting the respiratory tract) and intragastric (targeting the digestive tract) infection with systemic intraperitoneal infection of two unrelated mouse strains. We observed that intranasal infection induced robust and long-term virus replication in the lungs and salivary glands but limited replication in the spleen. CD8 T-cell responses were somewhat weaker than upon intraperitoneal infection but showed similar kinetic profiles and phenotypes of antigen-specific cells. In contrast, intragastric infection resulted in abortive or poor virus replication in all tested organs and poor T-cell responses to the virus, especially at late times after infection. Consistent with the T-cell kinetics, the MCMV latent load was high in the lungs but low in the spleen of intranasally infected mice and lowest in all tested organs upon intragastric infection. In conclusion, we showed that intranasal but not intragastric infection of mice with MCMV represents a robust model to study the short- and long-term biology of CMV infection by a mucosal route.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000339
2016-01-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/185.html?itemId=/content/journal/jgv/10.1099/jgv.0.000339&mimeType=html&fmt=ahah

References

  1. Adler S. P.. ( 1989;). Cytomegalovirus and child day care. Evidence for an increased infection rate among day-care workers. N Engl J Med 321: 1290–1296 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altman J. D., Moss P. A., Goulder P. J., Barouch D. H., McHeyzer-Williams M. G., Bell J. I., McMichael A. J., Davis M. M.. ( 1996;). Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94–96 [CrossRef] [PubMed].
    [Google Scholar]
  3. Appay V., Dunbar P. R., Callan M., Klenerman P., Gillespie G. M., Papagno L., Ogg G. S., King A., Lechner F.. & other authors ( 2002;). Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8: 379–385 [CrossRef] [PubMed].
    [Google Scholar]
  4. Boppana S. B., Rivera L. B., Fowler K. B., Mach M., Britt W. J.. ( 2001;). Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 344: 1366–1371 [CrossRef] [PubMed].
    [Google Scholar]
  5. Campbell A. E., Cavanaugh V. J., Slater J. S.. ( 2008;). The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med Microbiol Immunol (Berl) 197: 205–213 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cannon M. J., Hyde T. B., Schmid D. S.. ( 2011;). Review of cytomegalovirus shedding in bodily fluids and relevance to congenital cytomegalovirus infection. Rev Med Virol 21: 240–255 [CrossRef] [PubMed].
    [Google Scholar]
  7. Čičin-Šain L., Podlech J., Messerle M., Reddehase M. J., Koszinowski U. H.. ( 2005;). Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79: 9492–9502 [CrossRef] [PubMed].
    [Google Scholar]
  8. Čičin-Šain L., Sylwester A. W., Hagen S. I., Siess D. C., Currier N., Legasse A. W., Fischer M. B., Koudelka C. W., Axthelm M. K., other authors. ( 2011;). Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. J Immunol 187: 1722–1732 [CrossRef] [PubMed].
    [Google Scholar]
  9. Čičin-Šain L., Brien J. D., Uhrlaub J. L., Drabig A., Marandu T. F., Nikolich-Zugich J.. ( 2012;). Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog 8: e1002849 [CrossRef] [PubMed].
    [Google Scholar]
  10. Diosi P., Babusceac L., Nevinglovschi O., Kun-Stoicu G.. ( 1967;). Cytomegalovirus infection associated with pregnancy. Lancet 290: 1063–1066 [CrossRef] [PubMed].
    [Google Scholar]
  11. Doom C. M., Hill A. B.. ( 2008;). MHC class I immune evasion in MCMV infection. Med Microbiol Immunol (Berl) 197: 191–204 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dworsky M., Yow M., Stagno S., Pass R. F., Alford C.. ( 1983;). Cytomegalovirus infection of breast milk and transmission in infancy. Pediatrics 72: 295–299 [PubMed].
    [Google Scholar]
  13. Fowler K. B., Pass R. F.. ( 1991;). Sexually transmitted diseases in mothers of neonates with congenital cytomegalovirus infection. J Infect Dis 164: 259–264 [CrossRef] [PubMed].
    [Google Scholar]
  14. Fowler K. B., Stagno S., Pass R. F.. ( 2003;). Maternal immunity and prevention of congenital cytomegalovirus infection. JAMA 289: 1008–1011 [CrossRef] [PubMed].
    [Google Scholar]
  15. Griffiths P., Baraniak I., Reeves M.. ( 2015;). The pathogenesis of human cytomegalovirus. J Pathol 235: 288–297 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hansen S. G., Vieville C., Whizin N., Coyne-Johnson L., Siess D. C., Drummond D. D., Legasse A. W., Axthelm M. K., Oswald K., other authors. ( 2009;). Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med 15: 293–299 [CrossRef] [PubMed].
    [Google Scholar]
  17. Holtappels R., Pahl-Seibert M. F., Thomas D., Reddehase M. J.. ( 2000;). Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62Llo memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74: 11495–11503 [CrossRef] [PubMed].
    [Google Scholar]
  18. Holtappels R., Thomas D., Podlech J., Reddehase M. J.. ( 2002;). Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76: 151–164 [CrossRef] [PubMed].
    [Google Scholar]
  19. Hsu K. M., Pratt J. R., Akers W. J., Achilefu S. I., Yokoyama W. M.. ( 2009;). Murine cytomegalovirus displays selective infection of cells within hours after systemic administration. J Gen Virol 90: 33–43 [CrossRef] [PubMed].
    [Google Scholar]
  20. Jordan M. C.. ( 1978;). Interstitial pneumonia and subclinical infection after intranasal inoculation of murine cytomegalovirus. Infect Immun 21: 275–280 [PubMed].
    [Google Scholar]
  21. Jordan S., Krause J., Prager A., Mitrovic M., Jonjic S., Koszinowski U. H., Adler B.. ( 2011;). Virus progeny of murine cytomegalovirus bacterial artificial chromosome pSM3fr show reduced growth in salivary glands due to a fixed mutation of MCK-2. J Virol 85: 10346–10353 [CrossRef] [PubMed].
    [Google Scholar]
  22. Karrer U., Sierro S., Wagner M., Oxenius A., Hengel H., Koszinowski U. H., Phillips R. E., Klenerman P.. ( 2003;). Memory inflation: continuous accumulation of antiviral CD8+T cells over time. J Immunol 170: 2022–2029 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kenneson A., Cannon M. J.. ( 2007;). Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 17: 253–276 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kirby A. C., Coles M. C., Kaye P. M.. ( 2009;). Alveolar macrophages transport pathogens to lung draining lymph nodes. J Immunol 183: 1983–1989 [CrossRef] [PubMed].
    [Google Scholar]
  25. Knabel M., Franz T. J., Schiemann M., Wulf A., Villmow B., Schmidt B., Bernhard H., Wagner H., Busch D. H.. ( 2002;). Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat Med 8: 631–637 [CrossRef] [PubMed].
    [Google Scholar]
  26. Lemmermann N. A. W., Podlech J., Seckert C. K., Kropp K. A., Grzimek N. K. A., Reddehase M. J., Holtappels R.. ( 2010;). CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. Methods Microbiol 37: 369–420 [CrossRef].
    [Google Scholar]
  27. Lemoine F. M., Humphries R. K., Abraham S. D., Krystal G., Eaves C. J.. ( 1988a;). Partial characterization of a novel stromal cell-derived pre-B-cell growth factor active on normal and immortalized pre-B cells. Exp Hematol 16: 718–726 [PubMed].
    [Google Scholar]
  28. Lemoine F. M., Krystal G., Humphries R. K., Eaves C. J.. ( 1988b;). Autocrine production of pre-B-cell stimulating activity by a variety of transformed murine pre-B-cell lines. Cancer Res 48: 6438–6443 [PubMed].
    [Google Scholar]
  29. Marco A. J., Domingo M., Ruberte J., Carretero A., Briones V., Dominguez L.. ( 1992;). Lymphatic drainage of Listeria monocytogenes and Indian ink inoculated in the peritoneal cavity of the mouse. Lab Anim 26: 200–205 [CrossRef] [PubMed].
    [Google Scholar]
  30. Morello C. S., Ye M., Hung S., Kelley L. A., Spector D. H.. ( 2005;). Systemic priming-boosting immunization with a trivalent plasmid DNA and inactivated murine cytomegalovirus (MCMV) vaccine provides long-term protection against viral replication following systemic or mucosal MCMV challenge. J Virol 79: 159–175 [CrossRef] [PubMed].
    [Google Scholar]
  31. Munks M. W., Cho K. S., Pinto A. K., Sierro S., Klenerman P., Hill A. B.. ( 2006;). Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177: 450–458 [CrossRef] [PubMed].
    [Google Scholar]
  32. O'Hara G. A., Welten S. P. M., Klenerman P., Arens R.. ( 2012;). Memory T cell inflation: understanding cause and effect. Trends Immunol 33: 84–90 [CrossRef] [PubMed].
    [Google Scholar]
  33. Pitcher C. J., Hagen S. I., Walker J. M., Lum R., Mitchell B. L., Maino V. C., Axthelm M. K., Picker L. J.. ( 2002;). Development and homeostasis of T cell memory in rhesus macaque. J Immunol 168: 29–43 [CrossRef] [PubMed].
    [Google Scholar]
  34. Ple C., Barrier M., Amniai L., Marquillies P., Bertout J., Tsicopoulos A., Walzer T., Lassalle P., Duez C.. ( 2010;). Natural killer cells accumulate in lung-draining lymph nodes and regulate airway eosinophilia in a murine model of asthma. Scand J Immunol 72: 118–127 [CrossRef] [PubMed].
    [Google Scholar]
  35. Podlech J., Holtappels R., Grzimek N. K., Reddehase M. J.. ( 2002;). Animal models: murine cytomegalovirus. Methods Microbiol 32: 493–525 [CrossRef].
    [Google Scholar]
  36. Redeker A., Welten S. P., Arens R.. ( 2014;). Viral inoculum dose impacts memory T-cell inflation. Eur J Immunol 44: 1046–1057 [CrossRef] [PubMed].
    [Google Scholar]
  37. Redwood A. J., Shellam G. R., Smith L. M.. ( 2013;). Molecular evolution of murine cytomegalovirus genomes. . In Cytomegaloviruses: From Molecular Pathogenesis to Intervention, pp. 23–37. Edited by Reddehase M. J.. Norfolk, UK: Caister Academic Press;.
    [Google Scholar]
  38. Saederup N., Aguirre S. A., Sparer T. E., Bouley D. M., Mocarski E. S.. ( 2001;). Murine cytomegalovirus CC chemokine homolog MCK-2 (m131-129) is a determinant of dissemination that increases inflammation at initial sites of infection. J Virol 75: 9966–9976 [CrossRef] [PubMed].
    [Google Scholar]
  39. Scalzo A. A., Lyons P. A., Fitzgerald N. A., Forbes C. A., Yokoyama W. M., Shellam G. R.. ( 1995;). Genetic mapping of Cmv1 in the region of mouse chromosome 6 encoding the NK gene complex-associated loci Ly49 and musNKR-P1. Genomics 27: 435–441 [CrossRef] [PubMed].
    [Google Scholar]
  40. Seckert C. K., Renzaho A., Tervo H. M., Krause C., Deegen P., Kühnapfel B., Reddehase M. J., Grzimek N. K.. ( 2009;). Liver sinusoidal endothelial cells are a site of murine cytomegalovirus latency and reactivation. J Virol 83: 8869–8884 [CrossRef] [PubMed].
    [Google Scholar]
  41. Seckert C. K., Griessl M., Büttner J. K., Scheller S., Simon C. O., Kropp K. A., Renzaho A., Kühnapfel B., Grzimek N. K., Reddehase M. J.. ( 2012;). Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol (Berl) 201: 551–566 [CrossRef] [PubMed].
    [Google Scholar]
  42. Shanley J. D., Thrall R. S., Forman S. J.. ( 1997;). Murine cytomegalovirus replication in the lungs of athymic BALB/c nude mice. J Infect Dis 175: 309–315 [CrossRef] [PubMed].
    [Google Scholar]
  43. Sierro S., Rothkopf R., Klenerman P.. ( 2005;). Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur J Immunol 35: 1113–1123 [CrossRef] [PubMed].
    [Google Scholar]
  44. Smith C. J., Turula H., Snyder C. M.. ( 2014;). Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog 10: e1004233 [CrossRef] [PubMed].
    [Google Scholar]
  45. Snyder C. M., Cho K. S., Bonnett E. L., van Dommelen S., Shellam G. R., Hill A. B.. ( 2008;). Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity 29: 650–659 [CrossRef] [PubMed].
    [Google Scholar]
  46. Stagno S., Reynolds D. W., Pass R. F., Alford C. A.. ( 1980;). Breast milk and the risk of cytomegalovirus infection. N Engl J Med 302: 1073–1076 [CrossRef] [PubMed].
    [Google Scholar]
  47. Stahl F. R., Heller K., Halle S., Keyser K. A., Busche A., Marquardt A., Wagner K., Boelter J., Bischoff Y., other authors. ( 2013;). Nodular inflammatory foci are sites of T cell priming and control of murine cytomegalovirus infection in the neonatal lung. PLoS Pathog 9: e1003828 [CrossRef] [PubMed].
    [Google Scholar]
  48. Stahl F. R., Keyser K. A., Heller K., Bischoff Y., Halle S., Wagner K., Messerle M., Förster R.. ( 2015;). Mck2-dependent infection of alveolar macrophages promotes replication of MCMV in nodular inflammatory foci of the neonatal lung. Mucosal Immunol 8: 57–67 [CrossRef] [PubMed].
    [Google Scholar]
  49. Vochem M., Hamprecht K., Jahn G., Speer C. P.. ( 1998;). Transmission of cytomegalovirus to preterm infants through breast milk. Pediatr Infect Dis J 17: 53–58 [CrossRef] [PubMed].
    [Google Scholar]
  50. Wu C. A., Paveglio S. A., Lingenheld E. G., Zhu L., Lefrançois L., Puddington L.. ( 2011;). Transmission of murine cytomegalovirus in breast milk: a model of natural infection in neonates. J Virol 85: 5115–5124 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000339
Loading
/content/journal/jgv/10.1099/jgv.0.000339
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error