1887

Abstract

Human cytomegalovirus (HCMV) UL42 is classified as a CMV-specific but function-unknown gene. According to its amino acid sequence, UL42 has a C-terminal hydrophobic domain predicted to be a transmembrane domain and two PPxY (PY) motifs in its N terminus, but no N-terminal signal peptide. These features resemble those of herpes simplex virus (HSV) UL56 and varicella-zoster virus ORF0. HCMV UL42 interacts with Itch, a member of the Nedd4 family of ubiquitin E3 ligases, through its PY motifs as observed in HSV UL56. HCMV UL42 was partially colocalized with the -Golgi network and cytoplasmic vesicles in transfected fibroblasts. Itch was colocalized with HCMV UL42 and accumulated in a fine-speckled pattern in the cytoplasm. UL42 induced the ubiquitination and degradation of Itch in HCMV-infected fibroblasts, and was partially colocalized with p62, a ubiquitin-binding protein, and CD63, a marker of lysosome and multivesicular bodies. The electrophoretic pattern of Itch was altered by infection with HCMV and the amount of Itch was increased by the deletion of UL42. Our findings suggest that the regulatory function of the Nedd4 E3 ligase family and the structural features of HCMV UL42 are conserved characteristics in herpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000336
2016-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/196.html?itemId=/content/journal/jgv/10.1099/jgv.0.000336&mimeType=html&fmt=ahah

References

  1. Angers A., Ramjaun A. R., McPherson P. S. 2004; The HECT domain ligase itch ubiquitinates endophilin and localizes to the trans-Golgi network and endosomal system. J Biol Chem 279:11471–11479 [View Article][PubMed]
    [Google Scholar]
  2. Boeckh M., Geballe A. P. 2011; Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest 121:1673–1680 [View Article][PubMed]
    [Google Scholar]
  3. Cao X. R., Lill N. L., Boase N., Shi P. P., Croucher D. R., Shan H., Qu J., Sweezer E. M., Place T., other authors. 2008; Nedd4 controls animal growth by regulating IGF-1 signaling. Sci Signal 1:ra5 [View Article][PubMed]
    [Google Scholar]
  4. Cepeda V., Esteban M., Fraile-Ramos A. 2010; Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cell Microbiol 12:386–404 [View Article][PubMed]
    [Google Scholar]
  5. Chaumorcel M., Lussignol M., Mouna L., Cavignac Y., Fahie K., Cotte-Laffitte J., Geballe A., Brune W., Beau I., other authors. 2012; The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. J Virol 86:2571–2584 [View Article][PubMed]
    [Google Scholar]
  6. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C.A., III, Kouzarides T., other authors. 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169[PubMed]
    [Google Scholar]
  7. Chen H. I., Sudol M. 1995; The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A 92:7819–7823 [View Article][PubMed]
    [Google Scholar]
  8. Cheng E. H., Nicholas J., Bellows D. S., Hayward G. S., Guo H. G., Reitz M. S., Hardwick J. M. 1997; A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci U S A 94:690–694 [View Article][PubMed]
    [Google Scholar]
  9. Dargan D. J., Jamieson F. E., MacLean J., Dolan A., Addison C., McGeoch D. J. 1997; The published DNA sequence of human cytomegalovirus strain AD169 lacks 929 base pairs affecting genes UL42 and UL43. J Virol 71:9833–9836[PubMed]
    [Google Scholar]
  10. Dolan A., Cunningham C., Hector R. D., Hassan-Walker A. F., Lee L., Addison C., Dargan D. J., McGeoch D. J., Gatherer D., other authors. 2004; Genetic content of wild-type human cytomegalovirus. J Gen Virol 85:1301–1312 [View Article][PubMed]
    [Google Scholar]
  11. Dölken L., Pfeffer S., Koszinowski U. H. 2009; Cytomegalovirus microRNAs. Virus Genes 38:355–364 [View Article][PubMed]
    [Google Scholar]
  12. Dunn W., Chou C., Li H., Hai R., Patterson D., Stolc V., Zhu H., Liu F. 2003; Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A 100:14223–14228 [View Article][PubMed]
    [Google Scholar]
  13. Freed E. O. 2002; Viral late domains. J Virol 76:4679–4687 [View Article][PubMed]
    [Google Scholar]
  14. Gao M., Labuda T., Xia Y., Gallagher E., Fang D., Liu Y. C., Karin M. 2004; Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306:271–275 [View Article][PubMed]
    [Google Scholar]
  15. Garnier L., Wills J. W., Verderame M. F., Sudol M. 1996; WW domains and retrovirus budding. Nature 381:744–745 [View Article][PubMed]
    [Google Scholar]
  16. Halwachs-Baumann G. 2007; Recent developments in human cytomegalovirus diagnosis. Expert Rev Anti Infect Ther 5:427–439 [View Article][PubMed]
    [Google Scholar]
  17. Heidecker G., Lloyd P. A., Fox K., Nagashima K., Derse D. 2004; Late assembly motifs of human T-cell leukemia virus type 1 and their relative roles in particle release. J Virol 78:6636–6648 [View Article][PubMed]
    [Google Scholar]
  18. Hirokawa T., Boon-Chieng S., Mitaku S. 1998; sosui: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379 [View Article][PubMed]
    [Google Scholar]
  19. Hooper C., Puttamadappa S. S., Loring Z., Shekhtman A., Bakowska J. C. 2010; Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol 8:72 [View Article][PubMed]
    [Google Scholar]
  20. Ikeda M., Ikeda A., Longan L. C., Longnecker R. 2000; The Epstein-Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology 268:178–191 [View Article][PubMed]
    [Google Scholar]
  21. Ikeda A., Caldwell R. G., Longnecker R., Ikeda M. 2003; Itchy, a Nedd4 ubiquitin ligase, downregulates latent membrane protein 2A activity in B-cell signaling. J Virol 77:5529–5534 [View Article][PubMed]
    [Google Scholar]
  22. Jarosinski K. W., Margulis N. G., Kamil J. P., Spatz S. J., Nair V. K., Osterrieder N. 2007; Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC. J Virol 81:10575–10587 [View Article][PubMed]
    [Google Scholar]
  23. Kasanov J., Pirozzi G., Uveges A. J., Kay B. K. 2001; Characterizing Class I WW domains defines key specificity determinants and generates mutant domains with novel specificities. Chem Biol 8:231–241 [View Article][PubMed]
    [Google Scholar]
  24. Knipe D. M., Howley P. M. (editors). 2013 Fields Virology Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health;
    [Google Scholar]
  25. Komatsu M., Ichimura Y. 2010; Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378 [View Article][PubMed]
    [Google Scholar]
  26. Koshizuka T., Goshima F., Takakuwa H., Nozawa N., Daikoku T., Koiwai O., Nishiyama Y. 2002; Identification and characterization of the UL56 gene product of herpes simplex virus type 2. J Virol 76:6718–6728 [View Article][PubMed]
    [Google Scholar]
  27. Koshizuka T., Ota M., Yamanishi K., Mori Y. 2010; Characterization of varicella-zoster virus-encoded ORF0 gene – comparison of parental and vaccine strains. Virology 405:280–288 [View Article][PubMed]
    [Google Scholar]
  28. Mettenleiter T. C. 2002; Herpesvirus assembly and egress. J Virol 76:1537–1547 [View Article][PubMed]
    [Google Scholar]
  29. Mizushima S., Nagata S. 1990; pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18:5322 [View Article][PubMed]
    [Google Scholar]
  30. Mocarski E. S., Prichard M. N., Tan C. S., Brown J. M. 1997; Reassessing the organization of the UL42-UL43 region of the human cytomegalovirus strain AD169 genome. Virology 239:169–175 [View Article][PubMed]
    [Google Scholar]
  31. Mu F. T., Callaghan J. M., Steele-Mortimer O., Stenmark H., Parton R. G., Campbell P. L., McCluskey J., Yeo J. P., Tock E. P., Toh B. H. 1995; EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J Biol Chem 270:13503–13511 [View Article][PubMed]
    [Google Scholar]
  32. Niwa H., Yamamura K., Miyazaki J. 1991; Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199 [View Article][PubMed]
    [Google Scholar]
  33. Perry W. L., Hustad C. M., Swing D. A., O'Sullivan T. N., Jenkins N. A., Copeland N. G. 1998; The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat Genet 18:143–146 [View Article][PubMed]
    [Google Scholar]
  34. Pickart C. M. 2001; Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533 [View Article][PubMed]
    [Google Scholar]
  35. Reimand J., Hui S., Jain S., Law B., Bader G. D. 2012; Domain-mediated protein interaction prediction: from genome to network. FEBS Lett 586:2751–2763 [View Article][PubMed]
    [Google Scholar]
  36. Sarid R., Sato T., Bohenzky R. A., Russo J. J., Chang Y. 1997; Kaposi's sarcoma-associated herpesvirus encodes a functional Bcl-2 homologue. Nat Med 3:293–298 [View Article][PubMed]
    [Google Scholar]
  37. Scialpi F., Malatesta M., Peschiaroli A., Rossi M., Melino G., Bernassola F. 2008; Itch self-polyubiquitylation occurs through lysine-63 linkages. Biochem Pharmacol 76:1515–1521 [View Article][PubMed]
    [Google Scholar]
  38. Shearwin-Whyatt L. M., Brown D. L., Wylie F. G., Stow J. L., Kumar S. 2004; N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking. J Cell Sci 117:3679–3689 [View Article][PubMed]
    [Google Scholar]
  39. Shearwin-Whyatt L., Dalton H. E., Foot N., Kumar S. 2006; Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. BioEssays 28:617–628 [CrossRef]
    [Google Scholar]
  40. Shembade N., Harhaj N. S., Parvatiyar K., Copeland N. G., Jenkins N. A., Matesic L. E., Harhaj E. W. 2008; The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol 9:254–262 [View Article][PubMed]
    [Google Scholar]
  41. Strack B., Calistri A., Accola M. A., Palu G., Gottlinger H. G. 2000; A role for ubiquitin ligase recruitment in retrovirus release. Proc Natl Acad Sci U S A 97:13063–13068 [View Article][PubMed]
    [Google Scholar]
  42. Sullivan B. M., Coscoy L. 2008; Downregulation of the T-cell receptor complex and impairment of T-cell activation by human herpesvirus 6 U24 protein. J Virol 82:602–608 [View Article][PubMed]
    [Google Scholar]
  43. Sullivan B. M., Coscoy L. 2010; The U24 protein from human herpesvirus 6 and 7 affects endocytic recycling. J Virol 84:1265–1275 [View Article][PubMed]
    [Google Scholar]
  44. Sung H., Schleiss M. R. 2010; Update on the current status of cytomegalovirus vaccines. Expert Rev Vaccines 9:1303–1314 [View Article][PubMed]
    [Google Scholar]
  45. Tenno T., Fujiwara K., Tochio H., Iwai K., Morita E. H., Hayashi H., Murata S., Hiroaki H., Sato M., other authors. 2004; Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 9:865–875 [CrossRef]
    [Google Scholar]
  46. Tischer B. K., von Einem J., Kaufer B., Osterrieder N. 2006; Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli . Biotechniques 40:191–197 [View Article][PubMed]
    [Google Scholar]
  47. Ushijima Y., Koshizuka T., Goshima F., Kimura H., Nishiyama Y. 2008; Herpes simplex virus type 2 UL56 interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. J Virol 82:5220–5233 [View Article][PubMed]
    [Google Scholar]
  48. Ushijima Y., Goshima F., Kimura H., Nishiyama Y. 2009; Herpes simplex virus type 2 tegument protein UL56 relocalizes ubiquitin ligase Nedd4 and has a role in transport and/or release of virions. Virol J 6:168 [View Article][PubMed]
    [Google Scholar]
  49. Ushijima Y., Luo C., Kamakura M., Goshima F., Kimura H., Nishiyama Y. 2010; Herpes simplex virus UL56 interacts with and regulates the Nedd4-family ubiquitin ligase Itch. Virol J 7:179 [View Article][PubMed]
    [Google Scholar]
  50. Wang X., Trotman L. C., Koppie T., Alimonti A., Chen Z., Gao Z., Wang J., Erdjument-Bromage H., Tempst P., other authors. 2007; NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128:129–139 [View Article][PubMed]
    [Google Scholar]
  51. Winberg G., Matskova L., Chen F., Plant P., Rotin D., Gish G., Ingham R., Ernberg I., Pawson T. 2000; Latent membrane protein 2A of Epstein-Barr virus binds WW domain E3 protein-ubiquitin ligases that ubiquitinate B-cell tyrosine kinases. Mol Cell Biol 20:8526–8535 [View Article][PubMed]
    [Google Scholar]
  52. Yang B., Gay D. L., MacLeod M. K., Cao X., Hala T., Sweezer E. M., Kappler J., Marrack P., Oliver P. M. 2008; Nedd4 augments the adaptive immune response by promoting ubiquitin-mediated degradation of Cbl-b in activated T cells. Nat Immunol 9:1356–1363 [View Article][PubMed]
    [Google Scholar]
  53. You F., Sun H., Zhou X., Sun W., Liang S., Zhai Z., Jiang Z. 2009; PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol 10:1300–1308 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000336
Loading
/content/journal/jgv/10.1099/jgv.0.000336
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error