1887

Abstract

Human cytomegalovirus (HCMV) UL42 is classified as a CMV-specific but function-unknown gene. According to its amino acid sequence, UL42 has a C-terminal hydrophobic domain predicted to be a transmembrane domain and two PPxY (PY) motifs in its N terminus, but no N-terminal signal peptide. These features resemble those of herpes simplex virus (HSV) UL56 and varicella-zoster virus ORF0. HCMV UL42 interacts with Itch, a member of the Nedd4 family of ubiquitin E3 ligases, through its PY motifs as observed in HSV UL56. HCMV UL42 was partially colocalized with the -Golgi network and cytoplasmic vesicles in transfected fibroblasts. Itch was colocalized with HCMV UL42 and accumulated in a fine-speckled pattern in the cytoplasm. UL42 induced the ubiquitination and degradation of Itch in HCMV-infected fibroblasts, and was partially colocalized with p62, a ubiquitin-binding protein, and CD63, a marker of lysosome and multivesicular bodies. The electrophoretic pattern of Itch was altered by infection with HCMV and the amount of Itch was increased by the deletion of UL42. Our findings suggest that the regulatory function of the Nedd4 E3 ligase family and the structural features of HCMV UL42 are conserved characteristics in herpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000336
2016-01-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/196.html?itemId=/content/journal/jgv/10.1099/jgv.0.000336&mimeType=html&fmt=ahah

References

  1. Angers A., Ramjaun A. R., McPherson P. S.. 2004; The HECT domain ligase itch ubiquitinates endophilin and localizes to the trans-Golgi network and endosomal system. J Biol Chem279:11471–11479 [CrossRef][PubMed]
    [Google Scholar]
  2. Boeckh M., Geballe A. P.. 2011; Cytomegalovirus: pathogen, paradigm, and puzzle. J Clin Invest121:1673–1680 [CrossRef][PubMed]
    [Google Scholar]
  3. Cao X. R., Lill N. L., Boase N., Shi P. P., Croucher D. R., Shan H., Qu J., Sweezer E. M., Place T., other authors. 2008; Nedd4 controls animal growth by regulating IGF-1 signaling. Sci Signal1:ra5 [CrossRef][PubMed]
    [Google Scholar]
  4. Cepeda V., Esteban M., Fraile-Ramos A.. 2010; Human cytomegalovirus final envelopment on membranes containing both trans-Golgi network and endosomal markers. Cell Microbiol12:386–404 [CrossRef][PubMed]
    [Google Scholar]
  5. Chaumorcel M., Lussignol M., Mouna L., Cavignac Y., Fahie K., Cotte-Laffitte J., Geballe A., Brune W., Beau I., other authors. 2012; The human cytomegalovirus protein TRS1 inhibits autophagy via its interaction with Beclin 1. J Virol86:2571–2584 [CrossRef][PubMed]
    [Google Scholar]
  6. Chee M. S., Bankier A. T., Beck S., Bohni R., Brown C. M., Cerny R., Horsnell T., Hutchison C.A., III, Kouzarides T., other authors. 1990; Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol154:125–169[PubMed]
    [Google Scholar]
  7. Chen H. I., Sudol M.. 1995; The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A92:7819–7823 [CrossRef][PubMed]
    [Google Scholar]
  8. Cheng E. H., Nicholas J., Bellows D. S., Hayward G. S., Guo H. G., Reitz M. S., Hardwick J. M.. 1997; A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci U S A94:690–694 [CrossRef][PubMed]
    [Google Scholar]
  9. Dargan D. J., Jamieson F. E., MacLean J., Dolan A., Addison C., McGeoch D. J.. 1997; The published DNA sequence of human cytomegalovirus strain AD169 lacks 929 base pairs affecting genes UL42 and UL43. J Virol71:9833–9836[PubMed]
    [Google Scholar]
  10. Dolan A., Cunningham C., Hector R. D., Hassan-Walker A. F., Lee L., Addison C., Dargan D. J., McGeoch D. J., Gatherer D., other authors. 2004; Genetic content of wild-type human cytomegalovirus. J Gen Virol85:1301–1312 [CrossRef][PubMed]
    [Google Scholar]
  11. Dölken L., Pfeffer S., Koszinowski U. H.. 2009; Cytomegalovirus microRNAs. Virus Genes38:355–364 [CrossRef][PubMed]
    [Google Scholar]
  12. Dunn W., Chou C., Li H., Hai R., Patterson D., Stolc V., Zhu H., Liu F.. 2003; Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sci U S A100:14223–14228 [CrossRef][PubMed]
    [Google Scholar]
  13. Freed E. O.. 2002; Viral late domains. J Virol76:4679–4687 [CrossRef][PubMed]
    [Google Scholar]
  14. Gao M., Labuda T., Xia Y., Gallagher E., Fang D., Liu Y. C., Karin M.. 2004; Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science306:271–275 [CrossRef][PubMed]
    [Google Scholar]
  15. Garnier L., Wills J. W., Verderame M. F., Sudol M.. 1996; WW domains and retrovirus budding. Nature381:744–745 [CrossRef][PubMed]
    [Google Scholar]
  16. Halwachs-Baumann G.. 2007; Recent developments in human cytomegalovirus diagnosis. Expert Rev Anti Infect Ther5:427–439 [CrossRef][PubMed]
    [Google Scholar]
  17. Heidecker G., Lloyd P. A., Fox K., Nagashima K., Derse D.. 2004; Late assembly motifs of human T-cell leukemia virus type 1 and their relative roles in particle release. J Virol78:6636–6648 [CrossRef][PubMed]
    [Google Scholar]
  18. Hirokawa T., Boon-Chieng S., Mitaku S.. 1998; sosui: classification and secondary structure prediction system for membrane proteins. Bioinformatics14:378–379 [CrossRef][PubMed]
    [Google Scholar]
  19. Hooper C., Puttamadappa S. S., Loring Z., Shekhtman A., Bakowska J. C.. 2010; Spartin activates atrophin-1-interacting protein 4 (AIP4) E3 ubiquitin ligase and promotes ubiquitination of adipophilin on lipid droplets. BMC Biol8:72 [CrossRef][PubMed]
    [Google Scholar]
  20. Ikeda M., Ikeda A., Longan L. C., Longnecker R.. 2000; The Epstein-Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology268:178–191 [CrossRef][PubMed]
    [Google Scholar]
  21. Ikeda A., Caldwell R. G., Longnecker R., Ikeda M.. 2003; Itchy, a Nedd4 ubiquitin ligase, downregulates latent membrane protein 2A activity in B-cell signaling. J Virol77:5529–5534 [CrossRef][PubMed]
    [Google Scholar]
  22. Jarosinski K. W., Margulis N. G., Kamil J. P., Spatz S. J., Nair V. K., Osterrieder N.. 2007; Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC. J Virol81:10575–10587 [CrossRef][PubMed]
    [Google Scholar]
  23. Kasanov J., Pirozzi G., Uveges A. J., Kay B. K.. 2001; Characterizing Class I WW domains defines key specificity determinants and generates mutant domains with novel specificities. Chem Biol8:231–241 [CrossRef][PubMed]
    [Google Scholar]
  24. Knipe D. M., Howley P. M. (editors). 2013; Fields Virology Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Wilkins Health;
    [Google Scholar]
  25. Komatsu M., Ichimura Y.. 2010; Physiological significance of selective degradation of p62 by autophagy. FEBS Lett584:1374–1378 [CrossRef][PubMed]
    [Google Scholar]
  26. Koshizuka T., Goshima F., Takakuwa H., Nozawa N., Daikoku T., Koiwai O., Nishiyama Y.. 2002; Identification and characterization of the UL56 gene product of herpes simplex virus type 2. J Virol76:6718–6728 [CrossRef][PubMed]
    [Google Scholar]
  27. Koshizuka T., Ota M., Yamanishi K., Mori Y.. 2010; Characterization of varicella-zoster virus-encoded ORF0 gene – comparison of parental and vaccine strains. Virology405:280–288 [CrossRef][PubMed]
    [Google Scholar]
  28. Mettenleiter T. C.. 2002; Herpesvirus assembly and egress. J Virol76:1537–1547 [CrossRef][PubMed]
    [Google Scholar]
  29. Mizushima S., Nagata S.. 1990; pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res18:5322 [CrossRef][PubMed]
    [Google Scholar]
  30. Mocarski E. S., Prichard M. N., Tan C. S., Brown J. M.. 1997; Reassessing the organization of the UL42-UL43 region of the human cytomegalovirus strain AD169 genome. Virology239:169–175 [CrossRef][PubMed]
    [Google Scholar]
  31. Mu F. T., Callaghan J. M., Steele-Mortimer O., Stenmark H., Parton R. G., Campbell P. L., McCluskey J., Yeo J. P., Tock E. P., Toh B. H.. 1995; EEA1, an early endosome-associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked by cysteine “fingers” and contains a calmodulin-binding IQ motif. J Biol Chem270:13503–13511 [CrossRef][PubMed]
    [Google Scholar]
  32. Niwa H., Yamamura K., Miyazaki J.. 1991; Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene108:193–199 [CrossRef][PubMed]
    [Google Scholar]
  33. Perry W. L., Hustad C. M., Swing D. A., O'Sullivan T. N., Jenkins N. A., Copeland N. G.. 1998; The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nat Genet18:143–146 [CrossRef][PubMed]
    [Google Scholar]
  34. Pickart C. M.. 2001; Mechanisms underlying ubiquitination. Annu Rev Biochem70:503–533 [CrossRef][PubMed]
    [Google Scholar]
  35. Reimand J., Hui S., Jain S., Law B., Bader G. D.. 2012; Domain-mediated protein interaction prediction: from genome to network. FEBS Lett586:2751–2763 [CrossRef][PubMed]
    [Google Scholar]
  36. Sarid R., Sato T., Bohenzky R. A., Russo J. J., Chang Y.. 1997; Kaposi's sarcoma-associated herpesvirus encodes a functional Bcl-2 homologue. Nat Med3:293–298 [CrossRef][PubMed]
    [Google Scholar]
  37. Scialpi F., Malatesta M., Peschiaroli A., Rossi M., Melino G., Bernassola F.. 2008; Itch self-polyubiquitylation occurs through lysine-63 linkages. Biochem Pharmacol76:1515–1521 [CrossRef][PubMed]
    [Google Scholar]
  38. Shearwin-Whyatt L. M., Brown D. L., Wylie F. G., Stow J. L., Kumar S.. 2004; N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking. J Cell Sci117:3679–3689 [CrossRef][PubMed]
    [Google Scholar]
  39. Shearwin-Whyatt L., Dalton H. E., Foot N., Kumar S.. 2006; Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. BioEssays28:617–628[CrossRef]
    [Google Scholar]
  40. Shembade N., Harhaj N. S., Parvatiyar K., Copeland N. G., Jenkins N. A., Matesic L. E., Harhaj E. W.. 2008; The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol9:254–262 [CrossRef][PubMed]
    [Google Scholar]
  41. Strack B., Calistri A., Accola M. A., Palu G., Gottlinger H. G.. 2000; A role for ubiquitin ligase recruitment in retrovirus release. Proc Natl Acad Sci U S A97:13063–13068 [CrossRef][PubMed]
    [Google Scholar]
  42. Sullivan B. M., Coscoy L.. 2008; Downregulation of the T-cell receptor complex and impairment of T-cell activation by human herpesvirus 6 U24 protein. J Virol82:602–608 [CrossRef][PubMed]
    [Google Scholar]
  43. Sullivan B. M., Coscoy L.. 2010; The U24 protein from human herpesvirus 6 and 7 affects endocytic recycling. J Virol84:1265–1275 [CrossRef][PubMed]
    [Google Scholar]
  44. Sung H., Schleiss M. R.. 2010; Update on the current status of cytomegalovirus vaccines. Expert Rev Vaccines9:1303–1314 [CrossRef][PubMed]
    [Google Scholar]
  45. Tenno T., Fujiwara K., Tochio H., Iwai K., Morita E. H., Hayashi H., Murata S., Hiroaki H., Sato M., other authors. 2004; Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells9:865–875[CrossRef]
    [Google Scholar]
  46. Tischer B. K., von Einem J., Kaufer B., Osterrieder N.. 2006; Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli . Biotechniques40:191–197 [CrossRef][PubMed]
    [Google Scholar]
  47. Ushijima Y., Koshizuka T., Goshima F., Kimura H., Nishiyama Y.. 2008; Herpes simplex virus type 2 UL56 interacts with the ubiquitin ligase Nedd4 and increases its ubiquitination. J Virol82:5220–5233 [CrossRef][PubMed]
    [Google Scholar]
  48. Ushijima Y., Goshima F., Kimura H., Nishiyama Y.. 2009; Herpes simplex virus type 2 tegument protein UL56 relocalizes ubiquitin ligase Nedd4 and has a role in transport and/or release of virions. Virol J6:168 [CrossRef][PubMed]
    [Google Scholar]
  49. Ushijima Y., Luo C., Kamakura M., Goshima F., Kimura H., Nishiyama Y.. 2010; Herpes simplex virus UL56 interacts with and regulates the Nedd4-family ubiquitin ligase Itch. Virol J7:179 [CrossRef][PubMed]
    [Google Scholar]
  50. Wang X., Trotman L. C., Koppie T., Alimonti A., Chen Z., Gao Z., Wang J., Erdjument-Bromage H., Tempst P., other authors. 2007; NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell128:129–139 [CrossRef][PubMed]
    [Google Scholar]
  51. Winberg G., Matskova L., Chen F., Plant P., Rotin D., Gish G., Ingham R., Ernberg I., Pawson T.. 2000; Latent membrane protein 2A of Epstein-Barr virus binds WW domain E3 protein-ubiquitin ligases that ubiquitinate B-cell tyrosine kinases. Mol Cell Biol20:8526–8535 [CrossRef][PubMed]
    [Google Scholar]
  52. Yang B., Gay D. L., MacLeod M. K., Cao X., Hala T., Sweezer E. M., Kappler J., Marrack P., Oliver P. M.. 2008; Nedd4 augments the adaptive immune response by promoting ubiquitin-mediated degradation of Cbl-b in activated T cells. Nat Immunol9:1356–1363 [CrossRef][PubMed]
    [Google Scholar]
  53. You F., Sun H., Zhou X., Sun W., Liang S., Zhai Z., Jiang Z.. 2009; PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol10:1300–1308 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000336
Loading
/content/journal/jgv/10.1099/jgv.0.000336
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error