1887

Abstract

Several herpesviruses have acquired the gene for the CD200 membrane protein from their hosts and can downregulate myeloid activity through interaction of this viral CD200 orthologue with the host receptor for CD200, namely CD200R, which can give inhibitory signals. This receptor is a ‘paired receptor’, meaning proteins related to the inhibitory CD200R are present but differ in that they can give activating signals and also give a negligible interaction with CD200. We showed that the viral orthologues e127 from rat cytomegalovirus and K14 from human herpesvirus 8 do not bind the activating CD200R-like proteins from their respective species, although they do bind the inhibitory receptors. It is thought that the activating receptors have evolved in response to pathogens targeting the inhibitory receptor. In this case, the CD200 orthologue is not trapped by the activating receptor but has maintained the specificity of the host from which it was acquired, suggesting that the activating members of the CD200R family have evolved to protect against a different pathogen.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000335
2016-01-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/179.html?itemId=/content/journal/jgv/10.1099/jgv.0.000335&mimeType=html&fmt=ahah

References

  1. Akkaya M., Barclay A. N.. 2010; Heterogeneity in the CD200R paired receptor family. Immunogenetics62:15–22 [CrossRef][PubMed]
    [Google Scholar]
  2. Akkaya M., Barclay A. N.. 2013; How do pathogens drive the evolution of paired receptors?. Eur J Immunol43:303–313 [CrossRef][PubMed]
    [Google Scholar]
  3. Akkaya M., Aknin M. L., Akkaya B., Barclay A. N.. 2013; Dissection of agonistic and blocking effects of CD200 receptor antibodies. PLoS One8:e63325 [CrossRef][PubMed]
    [Google Scholar]
  4. Arase H., Mocarski E. S., Campbell A. E., Hill A. B., Lanier L. L.. 2002; Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science296:1323–1326 [CrossRef][PubMed]
    [Google Scholar]
  5. Aricescu A. R., Lu W., Jones E. Y.. 2006; A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr62:1243–1250 [CrossRef][PubMed]
    [Google Scholar]
  6. Barclay A. N., Hatherley D.. 2008; The counterbalance theory for evolution and function of paired receptors. Immunity29:675–678 [CrossRef][PubMed]
    [Google Scholar]
  7. Barclay A. N., Wright G. J., Brooke G., Brown M. H.. 2002; CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol23:285–290 [CrossRef][PubMed]
    [Google Scholar]
  8. Brown M. H., Boles K., van der Merwe P. A., Kumar V., Mathew P. A., Barclay A. N.. 1998; 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J Exp Med188:2083–2090 [CrossRef][PubMed]
    [Google Scholar]
  9. Cameron C. M., Barrett J. W., Liu L., Lucas A. R., McFadden G.. 2005; Myxoma virus M141R expresses a viral CD200 (vOX-2) that is responsible for down-regulation of macrophage and T-cell activation in vivo. J Virol79:6052–6067 [CrossRef][PubMed]
    [Google Scholar]
  10. Davis S. J., Ward H. A., Puklavec M. J., Willis A. C., Williams A. F., Barclay A. N.. 1990; High level expression in Chinese hamster ovary cells of soluble forms of CD4 T lymphocyte glycoprotein including glycosylation variants. J Biol Chem265:10410–10418[PubMed]
    [Google Scholar]
  11. Estep R. D., Rawlings S. D., Li H., Manoharan M., Blaine E. T., O'Connor M. A., Messaoudi I., Axthelm M. K., Wong S. W.. 2014; The rhesus rhadinovirus CD200 homologue affects immune responses and viral loads during in vivo infection. J Virol88:10635–10654 [CrossRef][PubMed]
    [Google Scholar]
  12. Foster-Cuevas M., Wright G. J., Puklavec M. J., Brown M. H., Barclay A. N.. 2004; Human herpesvirus 8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J Virol78:7667–7676 [CrossRef][PubMed]
    [Google Scholar]
  13. Foster-Cuevas M., Westerholt T., Ahmed M., Brown M. H., Barclay A. N., Voigt S.. 2011; Cytomegalovirus e127 protein interacts with the inhibitory CD200 receptor. J Virol85:6055–6059 [CrossRef][PubMed]
    [Google Scholar]
  14. Gorczynski R., Chen Z., Kai Y., Lee L., Wong S., Marsden P. A.. 2004; CD200 is a ligand for all members of the CD200R family of immunoregulatory molecules. J Immunol172:7744–7749 [CrossRef][PubMed]
    [Google Scholar]
  15. Hatherley D., Barclay A. N.. 2004; The CD200 and CD200 receptor cell surface proteins interact through their N-terminal immunoglobulin-like domains. Eur J Immunol34:1688–1694 [CrossRef][PubMed]
    [Google Scholar]
  16. Hatherley D., Cherwinski H. M., Moshref M., Barclay A. N.. 2005; Recombinant CD200 protein does not bind activating proteins closely related to CD200 receptor. J Immunol175:2469–2474 [CrossRef][PubMed]
    [Google Scholar]
  17. Hatherley D., Graham S. C., Turner J., Harlos K., Stuart D. I., Barclay A. N.. 2008; Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol Cell31:266–277 [CrossRef][PubMed]
    [Google Scholar]
  18. Hatherley D., Lea S. M., Johnson S., Barclay A. N.. 2013; Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure21:820–832 [CrossRef][PubMed]
    [Google Scholar]
  19. Kojima T., Obata K., Mukai K., Sato S., Takai T., Minegishi Y., Karasuyama H.. 2007; Mast cells and basophils are selectively activated in vitro and in vivo through CD200R3 in an IgE-independent manner. J Immunol179:7093–7100 [CrossRef][PubMed]
    [Google Scholar]
  20. Ma B. J., Craveiro Salvado C. M., Kane K. P.. 2014; The activating Ly49W and inhibitory Ly49G NK cell receptors display similar affinities for identical MHC class I ligands. Immunogenetics66:467–477 [CrossRef][PubMed]
    [Google Scholar]
  21. Misstear K., Chanas S. A., Rezaee S. A., Colman R., Quinn L. L., Long H. M., Goodyear O., Lord J. M., Hislop A. D., Blackbourn D. J.. 2012; Suppression of antigen-specific T cell responses by the Kaposi's sarcoma-associated herpesvirus viral OX2 protein and its cellular orthologue, CD200. J Virol86:6246–6257 [CrossRef][PubMed]
    [Google Scholar]
  22. Mizushima S., Nagata S.. 1990; pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res18:5322 [CrossRef][PubMed]
    [Google Scholar]
  23. Nakayama M., Underhill D. M., Petersen T. W., Li B., Kitamura T., Takai T., Aderem A.. 2007; Paired Ig-like receptors bind to bacteria and shape TLR-mediated cytokine production. J Immunol178:4250–4259 [CrossRef][PubMed]
    [Google Scholar]
  24. Shiratori I., Yamaguchi M., Suzukawa M., Yamamoto K., Lanier L. L., Saito T., Arase H.. 2005; Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200. J Immunol175:4441–4449 [CrossRef][PubMed]
    [Google Scholar]
  25. Stack G., Jones E., Marsden M., Stacey M. A., Snelgrove R. J., Lacaze P., Jacques L. C., Cuff S. M., Stanton R. J., other authors. 2015; CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog11:e1004641 [CrossRef][PubMed]
    [Google Scholar]
  26. Valés-Gómez M., Reyburn H. T., Erskine R. A., Strominger J.. 1998; Differential binding to HLA-C of p50-activating and p58-inhibitory natural killer cell receptors. Proc Natl Acad Sci U S A95:14326–14331 [CrossRef][PubMed]
    [Google Scholar]
  27. van der Merwe P. A., Barclay A. N.. 1994; Transient intercellular adhesion: the importance of weak protein-protein interactions. Trends Biochem Sci19:354–358 [CrossRef][PubMed]
    [Google Scholar]
  28. Voehringer D., Rosen D. B., Lanier L. L., Locksley R. M.. 2004; CD200 receptor family members represent novel DAP12-associated activating receptors on basophils and mast cells. J Biol Chem279:54117–54123 [CrossRef][PubMed]
    [Google Scholar]
  29. Winter C. C., Gumperz J. E., Parham P., Long E. O., Wagtmann N.. 1998; Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J Immunol161:571–577[PubMed]
    [Google Scholar]
  30. Wright G. J., Puklavec M. J., Willis A. C., Hoek R. M., Sedgwick J. D., Brown M. H., Barclay A. N.. 2000; Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity13:233–242 [CrossRef][PubMed]
    [Google Scholar]
  31. Wright G. J., Cherwinski H., Foster-Cuevas M., Brooke G., Puklavec M. J., Bigler M., Song Y., Jenmalm M., Gorman D., other authors. 2003; Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol171:3034–3046 [CrossRef][PubMed]
    [Google Scholar]
  32. Zhang L., Stanford M., Liu J., Barrett C., Jiang L., Barclay A. N., McFadden G.. 2009; Inhibition of macrophage activation by the myxoma virus M141 protein (vCD200). J Virol83:9602–9607 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000335
Loading
/content/journal/jgv/10.1099/jgv.0.000335
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error