1887

Abstract

There is growing evidence that virus particles also contain host cell proteins, which provide viruses with certain properties required for entry and release. A proteomic analysis performed on double-gradient-purified hepatitis C virus (HCV) from two highly viraemic patients identified the phosphatidylinositol 3,5-bisphosphate 5-phosphatase FIG4 (KIAA0274) as part of the viral particles. We validated the association using immunoelectron microscopy, immunoprecipitation and neutralization assays as well as patient-derived virus particles. RNA interference-mediated reduction of FIG4 expression decreased cholesteryl ester (CE) levels along with intra- and extracellular viral infectivity without affecting HCV RNA levels. Likewise, overexpressing FIG4 increased intracellular CE levels as well as intra- and extracellular viral infectivity without affecting viral RNA levels. Triglyceride levels and lipid droplet (LD) parameters remained unaffected. The 3,5-bisphosphate 5-phosphatase active site of FIG4 was found to strongly condition these results. Whilst FIG4 was found to localize to areas corresponding to viral assembly sites, at the immediate vicinity of LDs in calnexin-positive and HCV core-positive regions, no implication of FIG4 in the secretory pathway of the hepatocytes could be found using either FIG4-null mice, morphometry or functional assays of the ERGIC/Golgi compartments. This indicates that FIG4-dependent modulation of HCV infectivity is unrelated to alterations in the functionality of the secretory pathway. As a result of the documented implication of CE in the composition and infectivity of HCV particles, these results suggest that FIG4 binds to HCV and modulates particle formation in a CE-related manner.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000331
2016-01-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/69.html?itemId=/content/journal/jgv/10.1099/jgv.0.000331&mimeType=html&fmt=ahah

References

  1. Aizaki H. , Lee K. J. , Sung V. M. , Ishiko H. , Lai M. M. . ( 2004;). Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology 324: 450–461 [CrossRef] [PubMed].
    [Google Scholar]
  2. Alvisi G. , Madan V. , Bartenschlager R. . ( 2011;). Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol 8: 258–269 [CrossRef] [PubMed].
    [Google Scholar]
  3. Amako Y. , Sarkeshik A. , Hotta H. , Yates J. , Siddiqui A. . ( 2009;). Role of oxysterol binding protein in hepatitis C virus infection. J Virol 83: 9237–9246 [CrossRef] [PubMed].
    [Google Scholar]
  4. Backes P. , Quinkert D. , Reiss S. , Binder M. , Zayas M. , Rescher U. , Gerke V. , Bartenschlager R. , Lohmann V. . ( 2010;). Role of annexin A2 in the production of infectious hepatitis C virus particles. J Virol 84: 5775–5789 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bartenschlager R. , Penin F. , Lohmann V. , André P. . ( 2011;). Assembly of infectious hepatitis C virus particles. Trends Microbiol 19: 95–103 [CrossRef] [PubMed].
    [Google Scholar]
  6. Baulac S. , Lenk G. M. , Dufresnois B. , Ouled Amar Bencheikh B. , Couarch P. , Renard J. , Larson P. A. , Ferguson C. J. , Noé E. , other authors . ( 2014;). Role of the phosphoinositide phosphatase FIG4 gene in familial epilepsy with polymicrogyria. Neurology 82: 1068–1075 [CrossRef] [PubMed].
    [Google Scholar]
  7. Benga W. J. , Krieger S. E. , Dimitrova M. , Zeisel M. B. , Parnot M. , Lupberger J. , Hildt E. , Luo G. , McLauchlan J. , other authors . ( 2010;). Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology 51: 43–53 [CrossRef] [PubMed].
    [Google Scholar]
  8. Berger K. L. , Cooper J. D. , Heaton N. S. , Yoon R. , Oakland T. E. , Jordan T. X. , Mateu G. , Grakoui A. , Randall G. . ( 2009;). Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc Natl Acad Sci U S A 106: 7577–7582 [CrossRef] [PubMed].
    [Google Scholar]
  9. Bishé B. , Syed G. H. , Field S. J. , Siddiqui A. . ( 2012;). Role of phosphatidylinositol 4-phosphate (PI4P) and its binding protein GOLPH3 in hepatitis C virus secretion. J Biol Chem 287: 27637–27647 [CrossRef] [PubMed].
    [Google Scholar]
  10. Blight K. J. , McKeating J. A. , Rice C. M. . ( 2002;). Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76: 13001–13014 [CrossRef] [PubMed].
    [Google Scholar]
  11. Bonangelino C. J. , Nau J. J. , Duex J. E. , Brinkman M. , Wurmser A. E. , Gary J. D. , Emr S. D. , Weisman L. S. . ( 2002;). Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156: 1015–1028 [PubMed].[CrossRef]
    [Google Scholar]
  12. Boncompain G. , Perez F. . ( 2013;). Fluorescence-based analysis of trafficking in mammalian cells. Methods Cell Biol 118: 179–194 [CrossRef] [PubMed].
    [Google Scholar]
  13. Campeau P. M. , Lenk G. M. , Lu J. T. , Bae Y. , Burrage L. , Turnpenny P. , Román Corona-Rivera J. , Morandi L. , Mora M. , other authors . ( 2013;). Yunis-Varón syndrome is caused by mutations in FIG4, encoding a phosphoinositide phosphatase. Am J Hum Genet 92: 781–791 [CrossRef] [PubMed].
    [Google Scholar]
  14. Catanese M. T. , Uryu K. , Kopp M. , Edwards T. J. , Andrus L. , Rice W. J. , Silvestry M. , Kuhn R. J. , Rice C. M. . ( 2013;). Ultrastructural analysis of hepatitis C virus particles. Proc Natl Acad Sci U S A 110: 9505–9510 [CrossRef] [PubMed].
    [Google Scholar]
  15. Chang K. S. , Jiang J. , Cai Z. , Luo G. . ( 2007;). Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture. J Virol 81: 13783–13793 [CrossRef] [PubMed].
    [Google Scholar]
  16. Cho N. J. , Lee C. , Pang P. S. , Pham E. A. , Fram B. , Nguyen K. , Xiong A. , Sklan E. H. , Elazar M. , other authors . ( 2015;). Phosphatidylinositol 4,5-bisphosphate is an HCV NS5A ligand and mediates replication of the viral genome. Gastroenterology 148: 616–625 [CrossRef] [PubMed].
    [Google Scholar]
  17. Chow C. Y. , Zhang Y. , Dowling J. J. , Jin N. , Adamska M. , Shiga K. , Szigeti K. , Shy M. E. , Li J. , other authors . ( 2007;). Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4. J. Nature 448: 68–72 [CrossRef] [PubMed].
    [Google Scholar]
  18. Chow C. Y. , Landers J. E. , Bergren S. K. , Sapp P. C. , Grant A. E. , Jones J. M. , Everett L. , Lenk G. M. , McKenna-Yasek D. M. , other authors . ( 2009;). Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84: 85–88 [CrossRef] [PubMed].
    [Google Scholar]
  19. Colman H. , Le Berre-Scoul C. , Hernandez C. , Pierredon S. , Bihouée A. , Houlgatte R. , Vagner S. , Rosenberg A. R. , Féray C. . ( 2013;). Genome-wide analysis of host mRNA translation during hepatitis C virus infection. J Virol 87: 6668–6677 [CrossRef] [PubMed].
    [Google Scholar]
  20. Delang L. , Paeshuyse J. , Neyts J. . ( 2012;). The role of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate during viral replication. Biochem Pharmacol 84: 1400–1408 [CrossRef] [PubMed].
    [Google Scholar]
  21. Delgrange D. , Pillez A. , Castelain S. , Cocquerel L. , Rouillé Y. , Dubuisson J. , Wakita T. , Duverlie G. , Wychowski C. . ( 2007;). Robust production of infectious viral particles in Huh-7 cells by introducing mutations in hepatitis C virus structural proteins. J Gen Virol 88: 2495–2503 [CrossRef] [PubMed].
    [Google Scholar]
  22. Dove S. K. , Dong K. , Kobayashi T. , Williams F. K. , Michell R. H. . ( 2009;). Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419: 1–13 [CrossRef] [PubMed].
    [Google Scholar]
  23. Duex J. E. , Nau J. J. , Kauffman E. J. , Weisman L. S. . ( 2006;). Phosphoinositide 5-phosphatase FIG4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5: 723–731 [CrossRef] [PubMed].
    [Google Scholar]
  24. Egger D. , Wölk B. , Gosert R. , Bianchi L. , Blum H. E. , Moradpour D. , Bienz K. . ( 2002;). Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76: 5974–5984 [CrossRef] [PubMed].
    [Google Scholar]
  25. El-Serag H. B. . ( 2012;). Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142: 1264–1273 [CrossRef] [PubMed].
    [Google Scholar]
  26. Ferguson C. J. , Lenk G. M. , Jones J. M. , Grant A. E. , Winters J. J. , Dowling J. J. , Giger R. J. , Meisler M. H. . ( 2012;). Neuronal expression of FIG4 is both necessary and sufficient to prevent spongiform neurodegeneration. Hum Mol Genet 21: 3525–3534 [CrossRef] [PubMed].
    [Google Scholar]
  27. Harak C. , Radujkovic D. , Taveneau C. , Reiss S. , Klein R. , Bressanelli S. , Lohmann V. . ( 2014;). Mapping of functional domains of the lipid kinase phosphatidylinositol 4-kinase type III alpha involved in enzymatic activity and hepatitis C virus replication. J Virol 88: 9909–9926 [CrossRef] [PubMed].
    [Google Scholar]
  28. Hourioux C. , Patient R. , Morin A. , Blanchard E. , Moreau A. , Trassard S. , Giraudeau B. , Roingeard P. . ( 2007;). The genotype 3-specific hepatitis C virus core protein residue phenylalanine 164 increases steatosis in an in vitro cellular model. Gut 56: 1302–1308 [CrossRef] [PubMed].
    [Google Scholar]
  29. Huang H. , Sun F. , Owen D. M. , Li W. , Chen Y. , Gale M. Jr , Ye J. . ( 2007;). Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A 104: 5848–5853 [CrossRef] [PubMed].
    [Google Scholar]
  30. Ikonomov O. C. , Sbrissa D. , Shisheva A. . ( 2006;). Localized PtdIns 3,5-P2 synthesis to regulate early endosome dynamics and fusion. Am J Physiol Cell Physiol 291: C393–C404 [CrossRef] [PubMed].
    [Google Scholar]
  31. Jammart B. , Michelet M. , Pécheur E. I. , Parent R. , Bartosch B. , Zoulim F. , Durantel D. . ( 2013;). [CrossRef] Very-low-density lipoprotein (VLDL)-producing and hepatitis C virus-replicating HepG2 cells secrete no more lipoviroparticles than VLDL-deficient Huh7.5 cells. J Virol 87: 5065–5080.
    [Google Scholar]
  32. Lambert J. E. , Bain V. G. , Ryan E. A. , Thomson A. B. , Clandinin M. T. . ( 2013;). Elevated lipogenesis and diminished cholesterol synthesis in patients with hepatitis C viral infection compared to healthy humans. Hepatology 57: 1697–1704 [CrossRef] [PubMed].
    [Google Scholar]
  33. Liefhebber J. M. , Hague C. V. , Zhang Q. , Wakelam M. J. , McLauchlan J. . ( 2014;). Modulation of triglyceride and cholesterol ester synthesis impairs assembly of infectious hepatitis C virus. J Biol Chem 289: 21276–21288 [CrossRef] [PubMed].
    [Google Scholar]
  34. Lindenbach B. D. . ( 2009;). Measuring HCV infectivity produced in cell culture and in vivo . Methods Mol Biol 510: 329–336 [CrossRef] [PubMed].
    [Google Scholar]
  35. Merz A. , Long G. , Hiet M. S. , Brügger B. , Chlanda P. , Andre P. , Wieland F. , Krijnse-Locker J. , Bartenschlager R. . ( 2011;). Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome. J Biol Chem 286: 3018–3032 [CrossRef] [PubMed].
    [Google Scholar]
  36. Meunier J. C. , Russell R. S. , Engle R. E. , Faulk K. N. , Purcell R. H. , Emerson S. U. . ( 2008;). Apolipoprotein C1 association with hepatitis C virus. J Virol 82: 9647–9656 [CrossRef] [PubMed].
    [Google Scholar]
  37. Michell R. H. , Heath V. L. , Lemmon M. A. , Dove S. K. . ( 2006;). Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31: 52–63 [CrossRef] [PubMed].
    [Google Scholar]
  38. Miyanari Y. , Atsuzawa K. , Usuda N. , Watashi K. , Hishiki T. , Zayas M. , Bartenschlager R. , Wakita T. , Hijikata M. , Shimotohno K. . ( 2007;). The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9: 1089–1097 [CrossRef] [PubMed].
    [Google Scholar]
  39. Nicholson G. , Lenk G. M. , Reddel S. W. , Grant A. E. , Towne C. F. , Ferguson C. J. , Simpson E. , Scheuerle A. , Yasick M. , other authors . ( 2011;). Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P2 phosphatase FIG4. Brain 134: 1959–1971 [CrossRef] [PubMed].
    [Google Scholar]
  40. Parent R. , Qu X. , Petit M. A. , Beretta L. . ( 2009;). The heat shock cognate protein 70 is associated with hepatitis C virus particles and modulates virus infectivity. Hepatology 49: 1798–1809 [CrossRef] [PubMed].
    [Google Scholar]
  41. Paul D. , Hoppe S. , Saher G. , Krijnse-Locker J. , Bartenschlager R. . ( 2013;). Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J Virol 87: 10612–10627 [CrossRef] [PubMed].
    [Google Scholar]
  42. Peyrou M. , Clément S. , Maier C. , Bourgoin L. , Branche E. , Conzelmann S. , Kaddai V. , Foti M. , Negro F. . ( 2013;). PTEN protein phosphatase activity regulates hepatitis C virus secretion through modulation of cholesterol metabolism. J Hepatol 59: 420–426 [CrossRef] [PubMed].
    [Google Scholar]
  43. Read S. A. , Tay E. , Shahidi M. , George J. , Douglas M. W. . ( 2014;). Hepatitis C virus infection mediates cholesteryl ester synthesis to facilitate infectious particle production. J Gen Virol 95: 1900–1910 [CrossRef] [PubMed].
    [Google Scholar]
  44. Rutherford A. C. , Traer C. , Wassmer T. , Pattni K. , Bujny M. V. , Carlton J. G. , Stenmark H. , Cullen P. J. . ( 2006;). The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119: 3944–3957 [CrossRef] [PubMed].
    [Google Scholar]
  45. Sbrissa D. , Ikonomov O. C. , Fu Z. , Ijuin T. , Gruenberg J. , Takenawa T. , Shisheva A. . ( 2007;). Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem 282: 23878–23891 [CrossRef] [PubMed].
    [Google Scholar]
  46. Tosch V. , Rohde H. M. , Tronchère H. , Zanoteli E. , Monroy N. , Kretz C. , Dondaine N. , Payrastre B. , Mandel J. L. , Laporte J. . ( 2006;). A novel PtdIns3P and PtdIns(3,5)P 2 phosphatase with an inactivating variant in centronuclear myopathy. Hum Mol Genet 15: 3098–3106 [CrossRef] [PubMed].
    [Google Scholar]
  47. Trotard M. , Lepère-Douard C. , Régeard M. , Piquet-Pellorce C. , Lavillette D. , Cosset F. L. , Gripon P. , Le Seyec J. . ( 2009;). Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening. FASEB J 23: 3780–3789 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000331
Loading
/content/journal/jgv/10.1099/jgv.0.000331
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error