1887

Abstract

In , generalized transduction mediated by temperate bacteriophages represents a highly efficient way of transferring antibiotic resistance genes between strains. In the present study, we identified and characterized in detail a new efficiently transducing bacteriophage of the family , designated ϕJB, which resides as a prophage in the meticillin-resistant (MRSA) strain Jevons B. Whole-genome sequencing followed by detailed analysis uncovered a linear dsDNA genome consisting of 43 012 bp and comprising 70 ORFs, of which ∼40 encoded proteins with unknown function. A global genome alignment of ϕJB and other efficiently transducing phages ϕ11, ϕ53, ϕ80, ϕ80α and ϕNM4 showed a high degree of homology with ϕNM4 and substantial differences with regard to other phages. Using a model transduction system with a well-defined donor and recipient, ϕJB transferred the tetracycline resistance plasmid pT181 and a penicillinase plasmid with outstanding frequencies, beating most of the above-mentioned phages by an order of magnitude. Moreover, ϕJB demonstrated high frequencies of transferring antibiotic resistance plasmids even upon induction from a lysogenic donor strain. Considering such transducing potential, ϕJB and related bacteriophages may serve as a suitable tool for elucidating the nature of transduction and its contribution to the spread of antibiotic resistance genes in naturally occurring MRSA populations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000329
2016-01-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/258.html?itemId=/content/journal/jgv/10.1099/jgv.0.000329&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Asheshov E. H.. 1969; The genetics of penicillinase production in Staphylococcus aureus strain PS80. J Gen Microbiol59:289–301 [CrossRef][PubMed]
    [Google Scholar]
  3. Bae T., Baba T., Hiramatsu K., Schneewind O.. 2006; Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol Microbiol62:1035–1047 [CrossRef][PubMed]
    [Google Scholar]
  4. Blouse L. E., Mauney C. U., Marraro R. V., Dupuy H. J.. 1972; Apparent spontaneous induction of Staphylococcus aureus isolated from clinical sources. Appl Microbiol23:1023–1024[PubMed]
    [Google Scholar]
  5. Bradley R. K., Roberts A., Smoot M., Juvekar S., Do J., Dewey C., Holmes I., Pachter L.. 2009; Fast statistical alignment. PLOS Comput Biol5:e1000392 [CrossRef][PubMed]
    [Google Scholar]
  6. Brown D. T., Brown N. C., Burlingham B. T.. 1972; Morphology and physical properties of Staphylococcus bacteriophage P11-M15. J Virol9:664–671[PubMed]
    [Google Scholar]
  7. Brudno M., Do C. B., Cooper G. M., Kim M. F., Davydov E., Green E. D., Sidow A., Batzoglou S., NISC Comparative Sequencing Program. 2003; lagan and Multi-lagan: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res13:721–731 [CrossRef][PubMed]
    [Google Scholar]
  8. Canchaya C., Proux C., Fournous G., Bruttin A., Brüssow H.. 2003; Prophage genomics. Microbiol Mol Biol Rev67:238–276 [CrossRef][PubMed]
    [Google Scholar]
  9. Casjens S. R., Gilcrease E. B.. 2009; Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol502:91–111 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen J., Novick R. P.. 2009; Phage-mediated intergeneric transfer of toxin genes. Science323:139–141 [CrossRef][PubMed]
    [Google Scholar]
  11. Cohen S., Sweeney H. M.. 1970; Transduction of methicillin resistance in Staphylococcus aureus dependent on an unusual specificity of the recipient strain. J Bacteriol104:1158–1167[PubMed]
    [Google Scholar]
  12. Deghorain M., Bobay L. M., Smeesters P. R., Bousbata S., Vermeersch M., Perez-Morga D., Drèze P. A., Rocha E. P., Touchon M., Van Melderen L.. 2012; Characterization of novel phages isolated in coagulase-negative staphylococci reveals evolutionary relationships with Staphylococcus aureus phages. J Bacteriol194:5829–5839 [CrossRef][PubMed]
    [Google Scholar]
  13. Doškarˇ J., Pallová P., Pantu˚ček R., Rosypal S., Ru˚žičková V., Pantu˚čková P., Kailerová J., Klepárník K., Malá Z., Boček P.. 2000; Genomic relatedness of Staphylococcus aureus phages of the International Typing Set and detection of serogroup A, B, and F prophages in lysogenic strains. Can J Microbiol46:1066–1076 [CrossRef][PubMed]
    [Google Scholar]
  14. Dowell C. E., Rosenblum E. D.. 1962; Serology and transduction in staphylococcal phage. J Bacteriol84:1071–1075[PubMed]
    [Google Scholar]
  15. Ferrer M. D., Quiles-Puchalt N., Harwich M. D., Tormo-Más M. A., Campoy S., Barbé J., Lasa I., Novick R. P., Christie G. E., Penadés J. R.. 2011; RinA controls phage-mediated packaging and transfer of virulence genes in Gram-positive bacteria. Nucleic Acids Res39:5866–5878 [CrossRef][PubMed]
    [Google Scholar]
  16. Frazer K. A., Pachter L., Poliakov A., Rubin E. M., Dubchak I.. 2004; vista: computational tools for comparative genomics. Nucleic Acids Res32:(Web Server)W273–W239 [CrossRef][PubMed]
    [Google Scholar]
  17. Goerke C., Pantu˚ček R., Holtfreter S., Schulte B., Zink M., Grumann D., Bröker B. M., Doškarˇ J., Wolz C.. 2009; Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J Bacteriol191:3462–3468 [CrossRef][PubMed]
    [Google Scholar]
  18. Goujon M., McWilliam H., Li W., Valentin F., Squizzato S., Paern J., Lopez R.. 2010; A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res38:(Web Server)W695–W699 [CrossRef][PubMed]
    [Google Scholar]
  19. Iandolo J. J., Worrell V., Groicher K. H., Qian Y., Tian R., Kenton S., Dorman A., Ji H., Lin S., other authors. 2002; Comparative analysis of the genomes of the temperate bacteriophages φ11, φ12 and φ13 of Staphylococcus aureus 8325. Gene289:109–118 [CrossRef][PubMed]
    [Google Scholar]
  20. Isidro A., Henriques A. O., Tavares P.. 2004; The portal protein plays essential roles at different steps of the SPP1 DNA packaging process. Virology322:253–263 [CrossRef][PubMed]
    [Google Scholar]
  21. Jevons M. P.. 1961; “Celbenin”-resistant staphylococci. Br Med J1:124–125 [CrossRef]
    [Google Scholar]
  22. Kahánková J., Pantu˚ček R., Goerke C., Ru˚žičková V., Holochová P., Doškarˇ J.. 2010; Multilocus PCR typing strategy for differentiation of Staphylococcus aureus siphoviruses reflecting their modular genome structure. Environ Microbiol12:2527–2538 [CrossRef][PubMed]
    [Google Scholar]
  23. Kayser F. H., Wüst J., Corrodi P.. 1972; Transduction and elimination of resistance determinants in methicillin-resistant Staphylococcus aureus . Antimicrob Agents Chemother2:217–223 [CrossRef][PubMed]
    [Google Scholar]
  24. Keary R., McAuliffe O., Ross R. P., Hill C., O'Mahony J., Coffey A.. 2014; Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. Bacteriophage4:e28451 [CrossRef][PubMed]
    [Google Scholar]
  25. Krausz K. L., Bose J. L.. 2016; Bacteriophage transduction in Staphylococcus aureus: broth-based method. Methods Mol Biol1373:63–68[PubMed][CrossRef]
    [Google Scholar]
  26. Kreiswirth B. N., Löfdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P.. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature305:709–712 [CrossRef][PubMed]
    [Google Scholar]
  27. Kuntová L., Pantu˚ček R., Rájová J., Ru˚žičková V., Petráš P., Mašlanˇová I., Doškarˇ J.. 2012; Characteristics and distribution of plasmids in a clonally diverse set of methicillin-resistant Staphylococcus aureus strains. Arch Microbiol194:607–614 [CrossRef][PubMed]
    [Google Scholar]
  28. Kwan T., Liu J., DuBow M., Gros P., Pelletier J.. 2005; The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A102:5174–5179 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee C. Y., Iandolo J. J.. 1986; Integration of staphylococcal phage L54a occurs by site-specific recombination: structural analysis of the attachment sites. Proc Natl Acad Sci U S A83:5474–5478 [CrossRef][PubMed]
    [Google Scholar]
  30. Lesnik E. A., Sampath R., Levene H. B., Henderson T. J., McNeil J. A., Ecker D. J.. 2001; Prediction of rho-independent transcriptional terminators in Escherichia coli . Nucleic Acids Res29:3583–3594 [CrossRef][PubMed]
    [Google Scholar]
  31. Lindsay J. A.. 2008; S. aureus evolution: lineages and mobile genetic elements. In Staphylococcus: Molecular Genetics pp46–69Edited by Lindsay J. A.. Norwich: Caister Academic Press;
    [Google Scholar]
  32. Lukashin A. V., Borodovsky M.. 1998; GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res26:1107–1115 [CrossRef][PubMed]
    [Google Scholar]
  33. Maiques E., Ubeda C., Tormo M. A., Ferrer M. D., Lasa I., Novick R. P., Penadés J. R.. 2007; Role of staphylococcal phage and SaPI integrase in intra- and interspecies SaPI transfer. J Bacteriol189:5608–5616 [CrossRef][PubMed]
    [Google Scholar]
  34. Martineau F., Picard F. J., Grenier L., Roy P. H., Ouellette M., Bergeron M. G.. 2000; Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery. The ESPRIT Trial. J Antimicrob Chemother46:527–534 [CrossRef][PubMed]
    [Google Scholar]
  35. Mašlanˇová I., Doškarˇ J., Varga M., Kuntová L., Mužík J., Malúšková D., Ru˚žičková V., Pantu˚ček R.. 2013; Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environ Microbiol Rep5:66–73 [CrossRef][PubMed]
    [Google Scholar]
  36. Morse M. L., Labelle J. W.. 1962; Characteristics of a staphylococcal phage capable of transduction. J Bacteriol83:775–780[PubMed]
    [Google Scholar]
  37. Ng L. K., Martin I., Alfa M., Mulvey M.. 2001; Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes15:209–215 [CrossRef][PubMed]
    [Google Scholar]
  38. Novick R.. 1967; Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus . Virology33:155–166 [CrossRef][PubMed]
    [Google Scholar]
  39. Oliveira L., Tavares P., Alonso J. C.. 2013; Headful DNA packaging: bacteriophage SPP1 as a model system. Virus Res173:247–259 [CrossRef][PubMed]
    [Google Scholar]
  40. Pantu˚ček R., Doškarˇ J., Ru˚žičková V., Kašpárek P., Oráčová E., Kvardová V., Rosypal S.. 2004; Identification of bacteriophage types and their carriage in Staphylococcus aureus . Arch Virol149:1689–1703 [CrossRef][PubMed]
    [Google Scholar]
  41. Penadés J. R., Chen J., Quiles-Puchalt N., Carpena N., Novick R. P.. 2015; Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol23:171–178 [CrossRef][PubMed]
    [Google Scholar]
  42. Price M. N., Dehal P. S., Arkin A. P.. 2010; FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  43. Rao V. B., Feiss M.. 2008; The bacteriophage DNA packaging motor. Annu Rev Genet42:647–681 [CrossRef][PubMed]
    [Google Scholar]
  44. Resch A., Fehrenbacher B., Eisele K., Schaller M., Götz F.. 2005; Phage release from biofilm and planktonic Staphylococcus aureus cells. FEMS Microbiol Lett252:89–96 [CrossRef][PubMed]
    [Google Scholar]
  45. Skippington E., Ragan M. A.. 2011; Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev35:707–735 [CrossRef][PubMed]
    [Google Scholar]
  46. Solovyev V., Salamov A.. 2011; Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies pp171–204Edited by Li R. W.. New York, NY: Nova Science;
    [Google Scholar]
  47. van der Mee-Marquet N., Corvaglia A. R., Valentin A. S., Hernandez D., Bertrand X., Girard M., Kluytmans J., Donnio P. Y., Quentin R., François P.. 2013; Analysis of prophages harbored by the human-adapted subpopulation of Staphylococcus aureus CC398. Infect Genet Evol18:299–308 [CrossRef][PubMed]
    [Google Scholar]
  48. Varga M., Kuntová L., Pantu˚ček R., Mašlanˇová I., Ru˚žičková V., Doškarˇ J.. 2012; Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiol Lett332:146–152 [CrossRef][PubMed]
    [Google Scholar]
  49. Wiedenbeck J., Cohan F. M.. 2011; Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev35:957–976 [CrossRef][PubMed]
    [Google Scholar]
  50. Winstel V., Kühner P., Krismer B., Peschel A., Rohde H.. 2015; Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage. Appl Environ Microbiol81:2481–2488 [CrossRef][PubMed]
    [Google Scholar]
  51. Zhang X., Xu X., Yuan W., Hu Q., Shang W., Hu X., Tong Y., Rao X.. 2014; Complete genome sequence of Staphylococcus aureus XN108, an ST239-MRSA-SCCmec III strain with intermediate vancomycin resistance isolated in mainland China. Genome Announc2:e00449–e00414 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000329
Loading
/content/journal/jgv/10.1099/jgv.0.000329
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error