1887

Abstract

A CD8+ cell non-cytotoxic antiviral response (CNAR), mediated by a CD8+ cell antiviral factor (CAF), is associated with a long-term healthy state in human immunodeficiency virus (HIV) infection. CNAR/CAF reduces viral transcription without a known effect on specific viral sequences in the HIV genome. In studies to define the mechanism involved in the block in viral transcription, we now report that transcription from the HIV-LTR reporter is reduced in infected CD4+ cells upon treatment with CAF. In agreement with this observation, the amount of RNA polymerase II (RNAPII) on the HIV promoter and other viral regions was strongly diminished in HIV-infected CD4+ cells co-cultivated with CNAR-expressing CD8+ cells. These results demonstrate further that CNAR/CAF has a specific role in regulating HIV transcription and a step during the preinitiation complex assembly appears to be sensitive to CNAR/CAF.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000326
2016-01-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/220.html?itemId=/content/journal/jgv/10.1099/jgv.0.000326&mimeType=html&fmt=ahah

References

  1. Barker E., Mackewicz C. E., Reyes-Terán G., Sato A., Stranford S. A., Fujimura S. H., Christopherson C., Chang S. Y., Levy J. A.. 1998; Virological and immunological features of long-term human immunodeficiency virus-infected individuals who have remained asymptomatic compared with those who have progressed to acquired immunodeficiency syndrome. Blood92:3105–3114[PubMed]
    [Google Scholar]
  2. Blazek D., Barboric M., Kohoutek J., Oven I., Peterlin B. M.. 2005; Oligomerization of HEXIM1 via 7SK snRNA and coiled-coil region directs the inhibition of P-TEFb. Nucleic Acids Res33:7000–7010 [CrossRef][PubMed]
    [Google Scholar]
  3. Blazek D., Kohoutek J., Bartholomeeusen K., Johansen E., Hulinkova P., Luo Z., Cimermancic P., Ule J., Peterlin B. M.. 2011; The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev25:2158–2172 [CrossRef][PubMed]
    [Google Scholar]
  4. Bonneau K. R., Ng S., Foster H., Choi K. B., Berkhout B., Rabson A., Mackewicz C. E., Levy J. A.. 2008; Derivation of infectious HIV-1 molecular clones with LTR mutations: sensitivity to the CD8+ cell noncytotoxic anti-HIV response. Virology373:30–38 [CrossRef][PubMed]
    [Google Scholar]
  5. Brady J., Kashanchi F.. 2005; Tat gets the green light on transcription initiation. Retrovirology2:69 [CrossRef][PubMed]
    [Google Scholar]
  6. Brinchmann J. E., Gaudernack G., Vartdal F.. 1990; CD8+ T cells inhibit HIV replication in naturally infected CD4+ T cells. Evidence for a soluble inhibitor. J Immunol144:2961–2966[PubMed]
    [Google Scholar]
  7. Chao S. H., Fujinaga K., Marion J. E., Taube R., Sausville E. A., Senderowicz A. M., Peterlin B. M., Price D. H.. 2000; Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem275:28345–28348 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen C. H., Weinhold K. J., Bartlett J. A., Bolognesi D. P., Greenberg M. L.. 1993; CD8+ T lymphocyte-mediated inhibition of HIV-1 long terminal repeat transcription: a novel antiviral mechanism. AIDS Res Hum Retroviruses9:1079–1086 [CrossRef][PubMed]
    [Google Scholar]
  9. Gómez A. M., Smaill F. M., Rosenthal K. L.. 1994; Inhibition of HIV replication by CD8+ T cells correlates with CD4 counts and clinical stage of disease. Clin Exp Immunol97:68–75 [CrossRef][PubMed]
    [Google Scholar]
  10. Hoffman A. D., Banapour B., Levy J. A.. 1985; Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology147:326–335 [CrossRef][PubMed]
    [Google Scholar]
  11. Levy J. A.. 1993; HIV pathogenesis and long-term survival. AIDS7:1401–1410 [CrossRef][PubMed]
    [Google Scholar]
  12. Levy J. A.. 2003; The search for the CD8+ cell anti-HIV factor (CAF). Trends Immunol24:628–632 [CrossRef][PubMed]
    [Google Scholar]
  13. Levy J. A., Mackewicz C. E., Barker E.. 1996; Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol Today17:217–224 [CrossRef][PubMed]
    [Google Scholar]
  14. Mackewicz C. E., Ortega H. W., Levy J. A.. 1991; CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual. J Clin Invest87:1462–1466 [CrossRef][PubMed]
    [Google Scholar]
  15. Mackewicz C. E., Ortega H., Levy J. A.. 1994; Effect of cytokines on HIV replication in CD4+ lymphocytes: lack of identity with the CD8+ cell antiviral factor. Cell Immunol153:329–343 [CrossRef][PubMed]
    [Google Scholar]
  16. Mackewicz C. E., Blackbourn D. J., Levy J. A.. 1995; CD8+T cells suppress human immunodeficiency virus replication by inhibiting viral transcription. Proc Natl Acad Sci U S A92:2308–2312 [CrossRef][PubMed]
    [Google Scholar]
  17. Mackewicz C. E., Patterson B. K., Lee S. A., Levy J. A.. 2000; CD8+ cell noncytotoxic anti-human immunodeficiency virus response inhibits expression of viral RNA but not reverse transcription or provirus integration. J Gen Virol81:1261–1264 [CrossRef][PubMed]
    [Google Scholar]
  18. Ott M., Geyer M., Zhou Q.. 2011; The control of HIV transcription: keeping RNA polymerase II on track. Cell Host Microbe10:426–435 [CrossRef][PubMed]
    [Google Scholar]
  19. Peterlin B. M., Price D. H.. 2006; Controlling the elongation phase of transcription with P-TEFb. Mol Cell23:297–305 [CrossRef][PubMed]
    [Google Scholar]
  20. Raha T., Cheng S. W., Green M. R.. 2005; HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol3:e44 [CrossRef][PubMed]
    [Google Scholar]
  21. Rahl P. B., Lin C. Y., Seila A. C., Flynn R. A., McCuine S., Burge C. B., Sharp P. A., Young R. A.. 2010; c-Myc regulates transcriptional pause release. Cell141:432–445 [CrossRef][PubMed]
    [Google Scholar]
  22. Shridhar V., Chen Y., Gupta P.. 2014; The CD8 antiviral factor (CAF) can suppress HIV-1 transcription from the long terminal repeat (LTR) promoter in the absence of elements upstream of the CATATAA box. Virol J11:130 [CrossRef][PubMed]
    [Google Scholar]
  23. Taube R., Lin X., Irwin D., Fujinaga K., Peterlin B. M.. 2002; Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes. Mol Cell Biol22:321–331 [CrossRef][PubMed]
    [Google Scholar]
  24. Tomaras G. D., Lacey S. F., McDanal C. B., Ferrari G., Weinhold K. J., Greenberg M. L.. 2000; CD8+ T cell-mediated suppressive activity inhibits HIV-1 after virus entry with kinetics indicating effects on virus gene expression. Proc Natl Acad Sci U S A97:3503–3508 [CrossRef][PubMed]
    [Google Scholar]
  25. Walker C. M., Levy J. A.. 1989; A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV replication. Immunology66:628–630[PubMed]
    [Google Scholar]
  26. Walker C. M., Moody D. J., Stites D. P., Levy J. A.. 1986; CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science234:1563–1566 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000326
Loading
/content/journal/jgv/10.1099/jgv.0.000326
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error