p6gag domain confers HIV-1 Gag-Pol assembly and release capability Free

Abstract

During virus assembly, HIV-1 Gag-Pol is packaged into virions via interaction with Pr55gag. Studies suggest that Gag-Pol by itself is incapable of virus particle assembly or cell release, perhaps due to the lack of a budding domain in the form of p6gag, which is truncated within Gag-Pol because of a ribosomal frameshift during Gag translation. Additionally (or alternatively), large molecular size may not support Gag-Pol assembly into virus-like particles (VLPs) or release from cells. To test these hypotheses, we constructed Gag-Pol expression vectors retaining and lacking p6gag, and then reduced Gag-Pol molecular size by removing various lengths of the Pol sequence. Results indicate that Gag-Pol constructs retaining p6gag were capable of forming VLPs with a WT HIV-1 particle density. Gag-Pol molecular size reduction via partial removal of the Pol sequence mitigated the Gag-Pol assembly defect to a moderate degree. Our results suggest that the Gag-Pol assembly and budding defects are largely due to a lack of p6gag, but also in part due to size limitation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000321
2016-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/209.html?itemId=/content/journal/jgv/10.1099/jgv.0.000321&mimeType=html&fmt=ahah

References

  1. Balasubramaniam M., Freed E. O. 2011; New insights into HIV assembly and trafficking. Physiology (Bethesda) 26:236–251 [View Article][PubMed]
    [Google Scholar]
  2. Chiang C.-C., Wang S.-M., Pan Y.-Y., Huang K.-J., Wang C.-T. 2010; A single amino acid substitution in HIV-1 reverse transcriptase significantly reduces virion release. J Virol 84:976–982 [View Article][PubMed]
    [Google Scholar]
  3. Chiu H. C., Yao S. Y., Wang C. T. 2002; Coding sequences upstream of the human immunodeficiency virus type 1 reverse transcriptase domain in Gag-Pol are not essential for incorporation of the Pr160gag-pol into virus particles. J Virol 76:3221–3231 [View Article][PubMed]
    [Google Scholar]
  4. Chung H.-Y., Morita E., von Schwedler U., Müller B., Kräusslich H.-G., Sundquist W. I. 2008; NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J Virol 82:4884–4897 [View Article][PubMed]
    [Google Scholar]
  5. Doyon L., Payant C., Brakier-Gingras L., Lamarre D. 1998; Novel Gag-Pol frameshift site in human immunodeficiency virus type 1 variants resistant to protease inhibitors. J Virol 72:6146–6150[PubMed]
    [Google Scholar]
  6. Gan X., Gould S. J. 2012; HIV Pol inhibits HIV budding and mediates the severe budding defect of Gag-Pol. PLoS One 7:e29421 [View Article][PubMed]
    [Google Scholar]
  7. Gao S., Alarcón C., Sapkota G., Rahman S., Chen P.-Y., Goerner N., Macias M. J., Erdjument-Bromage H., Tempst P., Massagué J. 2009; Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-β signaling. Mol Cell 36:457–468 [View Article][PubMed]
    [Google Scholar]
  8. Göttlinger H. G., Sodroski J. G., Haseltine W. A. 1989; Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 86:5781–5785 [View Article][PubMed]
    [Google Scholar]
  9. Haraguchi H., Noda T., Kawaoka Y., Morikawa Y. 2012; A large extension to HIV-1 Gag, like Pol, has negative impacts on virion assembly. PLoS One 7:e47828 [View Article][PubMed]
    [Google Scholar]
  10. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. 1988; Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331:280–283 [View Article][PubMed]
    [Google Scholar]
  11. Kaplan A. H., Zack J. A., Knigge M., D A., Kempf D. J., Norbeck D. W., Swanstrom R. 1993; Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol 67:4050–4055[PubMed]
    [Google Scholar]
  12. Karacostas V., Wolffe E. J., Nagashima K., Gonda M. A., Moss B. 1993; Overexpression of the HIV-1 Gag-Pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193:661–671 [View Article][PubMed]
    [Google Scholar]
  13. Kohl N. E., Emini E. A., Schleif W. A., Davis L. J., Heimbach J. C., Dixon R. A., Scolnick E. M., Sigal I. S. 1988; Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 85:4686–4690 [View Article][PubMed]
    [Google Scholar]
  14. Liao W.-H., Wang C.-T. 2004; Characterization of human immunodeficiency virus type 1 Pr160gag-pol mutants with truncations downstream of the protease domain. Virology 329:180–188 [View Article][PubMed]
    [Google Scholar]
  15. Page K. A., Landau N. R., Littman D. R. 1990; Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64:5270–5276[PubMed]
    [Google Scholar]
  16. Pan Y.-Y., Wang S.-M., Huang K.-J., Chiang C.-C., Wang C.-T. 2012; Placement of leucine zipper motifs at the carboxyl terminus of HIV-1 protease significantly reduces virion production. PLoS One 7:e32845 [View Article][PubMed]
    [Google Scholar]
  17. Park J., Morrow C. D. 1991; Overexpression of the gag-pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. J Virol 65:5111–5117[PubMed]
    [Google Scholar]
  18. Peng C., Ho B. K., Chang T. W., Chang N. T. 1989; Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. J Virol 63:2550–2556[PubMed]
    [Google Scholar]
  19. Pettit S. C., Moody, M. D., Wehbie R. S., Kaplan A. H., Nantermet P. V., Klein C. A., Swanstrom R. 1994; The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68:8017–8027[PubMed]
    [Google Scholar]
  20. Pettit S., Everitt L., Choudhury S., Dunn B., Kaplan A. 2004; Initial cleavage of the human immunodeficiency virus type 1 GagPol precursor by its activated protease occurs by an intramolecular mechanism. J Virol 78:8477–8485 [View Article][PubMed]
    [Google Scholar]
  21. Royer M., Bardy M., Gay B., Tournier J., Boulanger P. 1997; Proteolytic activity in vivo and encapsidation of recombinant human immunodeficiency virus type 1 proteinase expressed in baculovirus-infected cells. J Gen Virol 78:131–142 [View Article][PubMed]
    [Google Scholar]
  22. Sanford B., Li Y., Maly C. J., Madson C. J., Chen H., Zhou Y., Belshan M. 2014; Deletions in the fifth alpha helix of HIV-1 matrix block virus release. Virology 468–470:293–302 [View Article][PubMed]
    [Google Scholar]
  23. Smith A. J., Srinivasakumar N., Hammarskjöld M. L., Rekosh D. 1993; Requirements for incorporation of Pr160gag-pol from human immunodeficiency virus type 1 into virus-like particles. J Virol 67:2266–2275[PubMed]
    [Google Scholar]
  24. Srinivasakumar N., Hammarskjöld M. L., Rekosh D. 1995; Characterization of deletion mutations in the capsid region of human immunodeficiency virus type 1 that affect particle formation and Gag-Pol precursor incorporation. J Virol 69:6106–6114[PubMed]
    [Google Scholar]
  25. Swanstrom R., Wills J. 1997; Synthesis, assembly and processing of viral proteins. In Retroviruses pp 263–334Edited by Coffin J., Hughes S., Varmus H. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000321
Loading
/content/journal/jgv/10.1099/jgv.0.000321
Loading

Data & Media loading...

Most cited Most Cited RSS feed