1887

Abstract

Coxsackievirus B3 strain 28 (CVB3/28) is less stable at 37 °C than eight other CVB3 strains with which it has been compared, including four in this study. In a variant CVB3/28 population selected for increased stability at 37 °C, the capsid proteins of the stable variant differed from the parental CVB3/28 by two mutations in Vp1 and one mutation in Vp3, each of which resulted in altered protein sequences. Each of the amino acid changes was individually associated with a more stable virus. Competition between CVB3/28 and a more stable derivative of the strain showed that propagation of the less stable virus was favoured in receptor-rich HeLa cells.

Erratum
This article contains a correction applying to the following content:
Corrigendum: Three capsid amino acids notably influence coxsackie B3 virus stability
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000319
2016-01-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/60.html?itemId=/content/journal/jgv/10.1099/jgv.0.000319&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Wootton J. C., Gertz E. M., Agarwala R., Morgulis A., Schäffer A. A., Yu Y. K.. ( 2005;). Protein database searches using compositionally adjusted substitution matrices. FEBS J 272: 5101–5109 [CrossRef] [PubMed].
    [Google Scholar]
  2. Carson S. D., Pirruccello S. J.. ( 2013;). HeLa cell heterogeneity and coxsackievirus B3 cytopathic effect: implications for inter-laboratory reproducibility of results. J Med Virol 85: 677–683 [CrossRef] [PubMed].
    [Google Scholar]
  3. Carson S. D., Kim K. S., Pirruccello S. J., Tracy S., Chapman N. M.. ( 2007;). Endogenous low-level expression of the coxsackievirus and adenovirus receptor enables coxsackievirus B3 infection of RD cells. J Gen Virol 88: 3031–3038 [CrossRef] [PubMed].
    [Google Scholar]
  4. Carson S. D., Chapman N. M., Hafenstein S., Tracy S.. ( 2011;). Variations of coxsackievirus B3 capsid primary structure, ligands, and stability are selected for in a coxsackievirus and adenovirus receptor-limited environment. J Virol 85: 3306–3314 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cunningham K. A., Chapman N. M., Carson S. D.. ( 2003;). Caspase-3 activation and ERK phosphorylation during CVB3 infection of cells: influence of the coxsackievirus and adenovirus receptor and engineered variants. Virus Res 92: 179–186 [CrossRef] [PubMed].
    [Google Scholar]
  6. de Verdugo U. R., Selinka H.-C., Huber M., Kramer B., Kellermann J., Hofschneider P. H., Kandolf R.. ( 1995;). Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J Virol 69: 6751–6757 [PubMed].
    [Google Scholar]
  7. Groarke J. M., Pevear D. C.. ( 1999;). Attenuated virulence of pleconaril-resistant coxsackievirus B3 variants. J Infect Dis 179: 1538–1541 [CrossRef] [PubMed].
    [Google Scholar]
  8. Higuchi R., Krummel B., Saiki R. K.. ( 1988;). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16: 7351–7367 [CrossRef] [PubMed].
    [Google Scholar]
  9. Lewis J. K., Bothner B., Smith T. J., Siuzdak G.. ( 1998;). Antiviral agent blocks breathing of the common cold virus. Proc Natl Acad Sci U S A 95: 6774–6778 [CrossRef] [PubMed].
    [Google Scholar]
  10. Li Q., Yafal A. G., Lee Y. M., Hogle J., Chow M.. ( 1994;). Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J Virol 68: 3965–3970 [PubMed].
    [Google Scholar]
  11. Liu Y., Sheng J., Fokine A., Meng G., Shin W. H., Long F., Kuhn R. J., Kihara D., Rossmann M. G.. ( 2015;). Structure and inhibition of EV-D68, a virus that causes respiratory illness in children. Science 347: 71–74 [CrossRef] [PubMed].
    [Google Scholar]
  12. McDermott B. M. Jr, Rux A. H., Eisenberg R. J., Cohen G. H., Racaniello V. R.. ( 2000;). Two distinct binding affinities of poliovirus for its cellular receptor. J Biol Chem 275: 23089–23096 [CrossRef] [PubMed].
    [Google Scholar]
  13. Muckelbauer J. K., Kremer M., Minor I., Tong L., Zlotnick A., Johnson J. E., Rossmann M. G.. ( 1995;). Structure determination of coxsackievirus B3 to 3.5 Å resolution. Acta Crystallogr D Biol Crystallogr 51: 871–887 [CrossRef] [PubMed].
    [Google Scholar]
  14. Organtini L. J., Makhov A. M., Conway J. F., Hafenstein S., Carson S. D.. ( 2014;). Kinetic and structural analysis of coxsackievirus B3 receptor interactions and formation of the A-particle. J Virol 88: 5755–5765 [CrossRef] [PubMed].
    [Google Scholar]
  15. Reagan K. J., Goldberg B., Crowell R. L.. ( 1984;). Altered receptor specificity of coxsackievirus B3 after growth in rhabdomyosarcoma cells. J Virol 49: 635–640 [PubMed].
    [Google Scholar]
  16. Reisdorph N., Thomas J. J., Katpally U., Chase E., Harris K., Siuzdak G., Smith T. J.. ( 2003;). Human rhinovirus capsid dynamics is controlled by canyon flexibility. Virology 314: 34–44 [CrossRef] [PubMed].
    [Google Scholar]
  17. Roivainen M., Piirainen L., Rysä T., Närvänen A., Hovi T.. ( 1993;). An immunodominant N-terminal region of VP1 protein of poliovirion that is buried in crystal structure can be exposed in solution. Virology 195: 762–765 [CrossRef] [PubMed].
    [Google Scholar]
  18. Schmidtke M., Hammerschmidt E., Schüler S., Zell R., Birch-Hirschfeld E., Makarov V. A., Riabova O. B., Wutzler P.. ( 2005;). Susceptibility of coxsackievirus B3 laboratory strains and clinical isolates to the capsid function inhibitor pleconaril: antiviral studies with virus chimeras demonstrate the crucial role of amino acid 1092 in treatment. J Antimicrob Chemother 56: 648–656 [CrossRef] [PubMed].
    [Google Scholar]
  19. Strauss M., Filman D. J., Belnap D. M., Cheng N., Noel R. T., Hogle J. M.. ( 2015;). Nectin-like interactions between poliovirus and its receptor trigger conformational changes associated with cell entry. J Virol 89: 4143–4157 [CrossRef] [PubMed].
    [Google Scholar]
  20. Tracy S., Drescher K. M., Chapman N. M., Kim K. S., Carson S. D., Pirruccello S., Lane P. H., Romero J. R., Leser J. S.. ( 2002;). Toward testing the hypothesis that group B coxsackieviruses (CVB) trigger insulin-dependent diabetes: inoculating nonobese diabetic mice with CVB markedly lowers diabetes incidence. J Virol 76: 12097–12111 [CrossRef] [PubMed].
    [Google Scholar]
  21. Tsang S. K., Danthi P., Chow M., Hogle J. M.. ( 2000;). Stabilization of poliovirus by capsid-binding antiviral drugs is due to entropic effects. J Mol Biol 296: 335–340 [CrossRef] [PubMed].
    [Google Scholar]
  22. Tu Z., Chapman N. M., Hufnagel G., Tracy S., Romero J. R., Barry W. H., Zhao L., Currey K., Shapiro B.. ( 1995;). The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5′ nontranslated region. J Virol 69: 4607–4618 [PubMed].
    [Google Scholar]
  23. van Vlijmen H. W., Karplus M.. ( 2005;). Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry. J Mol Biol 350: 528–542 [CrossRef] [PubMed].
    [Google Scholar]
  24. Zautner A. E., Körner U., Henke A., Badorff C., Schmidtke M.. ( 2003;). Heparan sulfates and coxsackievirus-adenovirus receptor: each one mediates coxsackievirus B3 PD infection. J Virol 77: 10071–10077 [CrossRef] [PubMed].
    [Google Scholar]
  25. Zautner A. E., Jahn B., Hammerschmidt E., Wutzler P., Schmidtke M.. ( 2006;). N- and 6-O-sulfated heparan sulfates mediate internalization of coxsackievirus B3 variant PD into CHO-K1 cells. J Virol 80: 6629–6636 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000319
Loading
/content/journal/jgv/10.1099/jgv.0.000319
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error