1887

Abstract

The quasispecies diversity of RNA viruses is mainly determined by the fidelity of RNA-dependent RNA polymerase (RdRp) during viral RNA replication. Certain amino acid residues play an important role in determining the fidelity, and such residues can be substituted with other amino acids to produce virus strains with higher fidelity. In this study, two amino acid substitutions (A283T and H421Y) in the RdRp of porcine reproductive and respiratory syndrome virus (PRRSV) were identified under the selection of ribavirin. Preliminary data showed that two substitutions were involved in conferring PRRSV with the properties of increased ribavirin resistance and restricted quasispecies diversity. The results indicated that these two amino acid residues (Ala283 and His421) play a crucial role in PRRSV replication by affecting the fidelity of its RdRp. The results have important implications for understanding the molecular mechanism of PRRSV evolution and pathogenicity, and developing a safer modified live-attenuated vaccine (MLV) against PRRSV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000316
2016-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/1/53.html?itemId=/content/journal/jgv/10.1099/jgv.0.000316&mimeType=html&fmt=ahah

References

  1. Agudo R., Ferrer-Orta C., Arias A., de la Higuera I., Perales C., Pérez-Luque R., Verdaguer N., Domingo E.. ( 2010;). A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape. PLoS Pathog 6: e1001072 [CrossRef] [PubMed].
    [Google Scholar]
  2. Beerens N., Selisko B., Ricagno S., Imbert I., van der Zanden L., Snijder E. J., Canard B.. ( 2007;). De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J Virol 81: 8384–8395 [CrossRef] [PubMed].
    [Google Scholar]
  3. Coffey L. L., Beeharry Y., Bordería A. V., Blanc H., Vignuzzi M.. ( 2011;). Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci U S A 108: 16038–16043 [CrossRef] [PubMed].
    [Google Scholar]
  4. Crotty S., Maag D., Arnold J. J., Zhong W., Lau J. Y., Hong Z., Andino R., Cameron C. E.. ( 2000;). The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 6: 1375–1379 [CrossRef] [PubMed].
    [Google Scholar]
  5. Curti E., Jaeger J.. ( 2013;). Residues Arg283, Arg285, and Ile287 in the nucleotide binding pocket of bovine viral diarrhea virus NS5B RNA polymerase affect catalysis and fidelity. J Virol 87: 199–207 [CrossRef] [PubMed].
    [Google Scholar]
  6. Domingo E., Holland J. J.. ( 1997;). RNA virus mutations and fitness for survival. Annu Rev Microbiol 51: 151–178 [CrossRef] [PubMed].
    [Google Scholar]
  7. Fang Y., Snijder E. J.. ( 2010;). The PRRSV replicase: exploring the multifunctionality of an intriguing set of nonstructural proteins. Virus Res 154: 61–76 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gnädig N. F., Beaucourt S., Campagnola G., Bordería A. V., Sanz-Ramos M., Gong P., Blanc H., Peersen O. B., Vignuzzi M.. ( 2012;). Coxsackievirus B3 mutator strains are attenuated in vivo. Proc Natl Acad Sci U S A 109: E2294–E2303 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hanada K., Suzuki Y., Nakane T., Hirose O., Gojobori T.. ( 2005;). The origin and evolution of porcine reproductive and respiratory syndrome viruses. Mol Biol Evol 22: 1024–1031 [CrossRef] [PubMed].
    [Google Scholar]
  10. Holland J. J., De La Torre J. C., Steinhauer D. A.. ( 1992;). RNA virus populations as quasispecies. Curr Top Microbiol Immunol 176: 1–20 [PubMed].
    [Google Scholar]
  11. Kim Y., Lee C.. ( 2013;). Ribavirin efficiently suppresses porcine nidovirus replication. Virus Res 171: 44–53 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kimman T. G., Cornelissen L. A., Moormann R. J., Rebel J. M., Stockhofe-Zurwieden N.. ( 2009;). Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine 27: 3704–3718 [CrossRef] [PubMed].
    [Google Scholar]
  13. Koboldt D. C., Zhang Q., Larson D. E., Shen D., McLellan M. D., Lin L., Miller C. A., Mardis E. R., Ding L., Wilson R. K.. ( 2012;). VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22: 568–576 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kong Y.. ( 2011;). Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98: 152–153 [CrossRef] [PubMed].
    [Google Scholar]
  15. Langmead B., Salzberg S. L.. ( 2012;). Fast gapped-read alignment with Bowtie 2.. Nat Methods 9: 357–359 [CrossRef] [PubMed].
    [Google Scholar]
  16. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R.. ( 2009;). 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079 [CrossRef] [PubMed].
    [Google Scholar]
  17. Li Y., Zhou L., Zhang J., Ge X., Zhou R., Zheng H., Geng G., Guo X., Yang H.. ( 2014;). Nsp9 and Nsp10 contribute to the fatal virulence of highly pathogenic porcine reproductive and respiratory syndrome virus emerging in China. PLoS Pathog 10: e1004216 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lu W. H., Tun H. M., Sun B. L., Mo J., Zhou Q. F., Deng Y. X., Xie Q. M., Bi Y. Z., Leung F. C., Ma J. Y.. ( 2015;). Re-emerging of porcine respiratory and reproductive syndrome virus (lineage 3) and increased pathogenicity after genomic recombination with vaccine variant. Vet Microbiol 175: 332–340 [CrossRef] [PubMed].
    [Google Scholar]
  19. Martín-Valls G. E., Kvisgaard L. K., Tello M., Darwich L., Cortey M., Burgara-Estrella A. J., Hernández J., Larsen L. E., Mateu E.. ( 2014;). Analysis of ORF5 and full-length genome sequences of porcine reproductive and respiratory syndrome virus isolates of genotypes 1 and 2 retrieved worldwide provides evidence that recombination is a common phenomenon and may produce mosaic isolates. J Virol 88: 3170–3181 [CrossRef] [PubMed].
    [Google Scholar]
  20. Murtaugh M. P., Stadejek T., Abrahante J. E., Lam T. T., Leung F. C.. ( 2010;). The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res 154: 18–30 [CrossRef] [PubMed].
    [Google Scholar]
  21. Ni Y. Y., Huang Y. W., Cao D., Opriessnig T., Meng X. J.. ( 2011;). Establishment of a DNA-launched infectious clone for a highly pneumovirulent strain of type 2 porcine reproductive and respiratory syndrome virus: identification and in vitro and in vivo characterization of a large spontaneous deletion in the nsp2 region. Virus Res 160: 264–273 [CrossRef] [PubMed].
    [Google Scholar]
  22. Pfeiffer J. K., Kirkegaard K.. ( 2003;). A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci U S A 100: 7289–7294 [CrossRef] [PubMed].
    [Google Scholar]
  23. Rozen-Gagnon K., Stapleford K. A., Mongelli V., Blanc H., Failloux A. B., Saleh M. C., Vignuzzi M.. ( 2014;). Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLoS Pathog 10: e1003877 [CrossRef] [PubMed].
    [Google Scholar]
  24. Sadeghipour S., Bek E. J., McMinn P. C.. ( 2013;). Ribavirin-resistant mutants of human enterovirus 71 express a high replication fidelity phenotype during growth in cell culture. J Virol 87: 1759–1769 [CrossRef] [PubMed].
    [Google Scholar]
  25. Sierra M., Airaksinen A., González-López C., Agudo R., Arias A., Domingo E.. ( 2007;). Foot-and-mouth disease virus mutant with decreased sensitivity to ribavirin: implications for error catastrophe. J Virol 81: 2012–2024 [CrossRef] [PubMed].
    [Google Scholar]
  26. Smith E. C., Blanc H., Surdel M. C., Vignuzzi M., Denison M. R.. ( 2013;). Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics. PLoS Pathog 9: e1003565 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tian D., Wei Z., Zevenhoven-Dobbe J. C., Liu R., Tong G., Snijder E. J., Yuan S.. ( 2012;). Arterivirus minor envelope proteins are a major determinant of viral tropism in cell culture. J Virol 86: 3701–3712 [CrossRef] [PubMed].
    [Google Scholar]
  28. Van Slyke G. A., Arnold J. J., Lugo A. J., Griesemer S. B., Moustafa I. M., Kramer L. D., Cameron C. E., Ciota A. T.. ( 2015;). Sequence-specific fidelity alterations associated with West Nile virus attenuation in mosquitoes. PLoS Pathog 11: e1005009 [CrossRef] [PubMed].
    [Google Scholar]
  29. Vignuzzi M., Stone J. K., Arnold J. J., Cameron C. E., Andino R.. ( 2006;). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439: 344–348 [CrossRef] [PubMed].
    [Google Scholar]
  30. Vignuzzi M., Wendt E., Andino R.. ( 2008;). Engineering attenuated virus vaccines by controlling replication fidelity. Nat Med 14: 154–161 [CrossRef] [PubMed].
    [Google Scholar]
  31. Zeng J., Wang H., Xie X., Li C., Zhou G., Yang D., Yu L.. ( 2014;). Ribavirin-resistant variants of foot-and-mouth disease virus: the effect of restricted quasispecies diversity on viral virulence. J Virol 88: 4008–4020 [CrossRef] [PubMed].
    [Google Scholar]
  32. Zhou Y., Zheng H., Gao F., Tian D., Yuan S.. ( 2011;). Mutational analysis of the SDD sequence motif of a PRRSV RNA-dependent RNA polymerase. Sci China Life Sci 54: 870–879 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000316
Loading
/content/journal/jgv/10.1099/jgv.0.000316
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error