The proteome of the infectious bronchitis virus Beau-R virion Open Access

Abstract

Infectious bronchitis is a highly contagious respiratory disease of poultry caused by the coronavirus infectious bronchitis virus (IBV). It was thought that coronavirus virions were composed of three major viral structural proteins until investigations of other coronaviruses showed that the virions also include viral non-structural and genus-specific accessory proteins as well as host-cell proteins. To study the proteome of IBV virions, virus was grown in embryonated chicken eggs, purified by sucrose-gradient ultracentrifugation and analysed by mass spectrometry. Analysis of three preparations of purified IBV yielded the three expected structural proteins plus 35 additional virion-associated host proteins. The virion-associated host proteins had a diverse range of functional attributions, being involved in cytoskeleton formation, RNA binding and protein folding pathways. Some of these proteins were unique to this study, while others were found to be orthologous to proteins identified in severe acute respiratory syndrome coronavirus virions and also virions from a number of other RNA and DNA viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000304
2015-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/12/3499.html?itemId=/content/journal/jgv/10.1099/jgv.0.000304&mimeType=html&fmt=ahah

References

  1. Bechtel J. T., Winant R. C., Ganem D. 2005; Host and viral proteins in the virion of Kaposi's sarcoma-associated herpesvirus. J Virol 79:4952–4964 [View Article][PubMed]
    [Google Scholar]
  2. Bentley K., Keep S. M., Armesto M., Britton P. 2013; Identification of a noncanonically transcribed subgenomic mRNA of infectious bronchitis virus and other gammacoronaviruses. J Virol 87:2128–2136 [View Article][PubMed]
    [Google Scholar]
  3. Boursnell M. E., Brown T. D., Foulds I. J., Green P. F., Tomley F. M., Binns M. M. 1987; Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J Gen Virol 68:57–77 [View Article][PubMed]
    [Google Scholar]
  4. Brierley I., Boursnell M. E., Binns M. M., Bilimoria B., Blok V. C., Brown T. D., Inglis S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6:3779–3785[PubMed]
    [Google Scholar]
  5. Casais R., Thiel V., Siddell S. G., Cavanagh D., Britton P. 2001; Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75:12359–12369 [View Article][PubMed]
    [Google Scholar]
  6. Casais R., Davies M., Cavanagh D., Britton P. 2005; Gene 5 of the avian coronavirus infectious bronchitis virus is not essential for replication. J Virol 79:8065–8078 [View Article][PubMed]
    [Google Scholar]
  7. Cavanagh D. 2005; Coronaviruses in poultry and other birds. Avian Pathol 34:439–448 [View Article][PubMed]
    [Google Scholar]
  8. Chertova E., Chertov O., Coren L. V., Roser J. D., Trubey C. M., Bess J. W. Jr, Sowder R. C. II, Barsov E., Hood B. L., other authors. 2006; Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80:9039–9052 [View Article][PubMed]
    [Google Scholar]
  9. Chromy L. R., Pipas J. M., Garcea R. L. 2003; Chaperone-mediated in vitro assembly of polyomavirus capsids. Proc Natl Acad Sci U S A 100:10477–10482 [View Article][PubMed]
    [Google Scholar]
  10. Chung C. S., Chen C. H., Ho M. Y., Huang C. Y., Liao C. L., Chang W. 2006; Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 80:2127–2140 [View Article][PubMed]
    [Google Scholar]
  11. Dent S., Neuman B. W. 2015; Purification of coronavirus virions for Cryo-EM and proteomic analysis. Methods Mol Biol 1282:99–108 [View Article][PubMed]
    [Google Scholar]
  12. Emmott E., Rodgers M. A., Macdonald A., McCrory S., Ajuh P., Hiscox J. A. 2010; Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals changes in the cytoplasmic, nuclear, and nucleolar proteomes in Vero cells infected with the coronavirus infectious bronchitis virus. Mol Cell Proteomics 9:1920–1936 [View Article][PubMed]
    [Google Scholar]
  13. Gerke V., Creutz C. E., Moss S. E. 2005; Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6:449–461 [View Article][PubMed]
    [Google Scholar]
  14. Guy J. S. 2015; Isolation and propagation of coronaviruses in embryonated eggs. Methods Mol Biol 1282:63–71 [View Article][PubMed]
    [Google Scholar]
  15. Hodgson T., Britton P., Cavanagh D. 2006; Neither the RNA nor the proteins of open reading frames 3a and 3b of the coronavirus infectious bronchitis virus are essential for replication. J Virol 80:296–305 [View Article][PubMed]
    [Google Scholar]
  16. Hu J., Anselmo D. 2000; In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: posttranslational activation by Hsp90. J Virol 74:11447–11455 [View Article][PubMed]
    [Google Scholar]
  17. Kattenhorn L. M., Mills R., Wagner M., Lomsadze A., Makeev V., Borodovsky M., Ploegh H. L., Kessler B. M. 2004; Identification of proteins associated with murine cytomegalovirus virions. J Virol 78:11187–11197 [View Article][PubMed]
    [Google Scholar]
  18. Kishimoto N., Onitsuka A., Kido K., Takamune N., Shoji S., Misumi S. 2012; Glyceraldehyde 3-phosphate dehydrogenase negatively regulates human immunodeficiency virus type 1 infection. Retrovirology 9:107 [View Article][PubMed]
    [Google Scholar]
  19. Knoops K., Kikkert M., Worm S. H., Zevenhoven-Dobbe J. C., van der Meer Y., Koster A. J., Mommaas A. M., Snijder E. J. 2008; SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol 6:e226 [View Article][PubMed]
    [Google Scholar]
  20. Kong Q., Xue C., Ren X., Zhang C., Li L., Shu D., Bi Y., Cao Y. 2010; Proteomic analysis of purified coronavirus infectious bronchitis virus particles. Proteome Sci 8:29 [View Article][PubMed]
    [Google Scholar]
  21. Lewit-Bentley A., Réty S., Sopkova-de Oliveira Santos J., Gerke V. 2000; S100-annexin complexes: some insights from structural studies. Cell Biol Int 24:799–802 [View Article][PubMed]
    [Google Scholar]
  22. Li S. W., Yang T. C., Wan L., Lin Y. J., Tsai F. J., Lai C. C., Lin C. W. 2012; Correlation between TGF-β1 expression and proteomic profiling induced by severe acute respiratory syndrome coronavirus papain-like protease. Proteomics 12:3193–3205 [View Article][PubMed]
    [Google Scholar]
  23. Lim K. P., Liu D. X. 1998; Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology 245:303–312 [View Article][PubMed]
    [Google Scholar]
  24. Lu X., Lu Y., Denison M. R. 1996; Intracellular and in vitro-translated 27-kDa proteins contain the 3C-like proteinase activity of the coronavirus MHV-A59. Virology 222:375–382 [View Article][PubMed]
    [Google Scholar]
  25. Maier H. J., Hawes P. C., Cottam E. M., Mantell J., Verkade P., Monaghan P., Wileman T., Britton P. 2013; Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes. MBio 4:e00801–e00813 [View Article][PubMed]
    [Google Scholar]
  26. Mann K., Mann M. 2011; In-depth analysis of the chicken egg white proteome using an LTQ Orbitrap Velos. Proteome Sci 9:7 [View Article][PubMed]
    [Google Scholar]
  27. Mi H., Muruganujan A., Casagrande J. T., Thomas P. D. 2013; Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566 [View Article][PubMed]
    [Google Scholar]
  28. Momose F., Naito T., Yano K., Sugimoto S., Morikawa Y., Nagata K. 2002; Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277:45306–45314 [View Article][PubMed]
    [Google Scholar]
  29. Neuman B. W., Joseph J. S., Saikatendu K. S., Serrano P., Chatterjee A., Johnson M. A., Liao L., Klaus J. P., Yates J. R. III, other authors. 2008; Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol 82:5279–5294 [View Article][PubMed]
    [Google Scholar]
  30. Neuhoff V., Arold N., Taube D., Ehrhardt W. 1988; Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262 [CrossRef]
    [Google Scholar]
  31. Nogales A., Márquez-Jurado S., Galán C., Enjuanes L., Almazán F. 2012; Transmissible gastroenteritis coronavirus RNA-dependent RNA polymerase and nonstructural proteins 2, 3, and 8 are incorporated into viral particles. J Virol 86:1261–1266 [View Article][PubMed]
    [Google Scholar]
  32. Segura M. M., Garnier A., Di Falco M. R., Whissell G., Meneses-Acosta A., Arcand N., Kamen A. 2008; Identification of host proteins associated with retroviral vector particles by proteomic analysis of highly purified vector preparations. J Virol 82:1107–1117 [View Article][PubMed]
    [Google Scholar]
  33. Shaw M. L., Stone K. L., Colangelo C. M., Gulcicek E. E., Palese P. 2008; Cellular proteins in influenza virus particles. PLoS Pathog 4:e1000085 [View Article][PubMed]
    [Google Scholar]
  34. Stern D. F., Burgess L., Sefton B. M. 1982; Structural analysis of virion proteins of the avian coronavirus infectious bronchitis virus. J Virol 42:208–219[PubMed]
    [Google Scholar]
  35. Swameye I., Schaller H. 1997; Dual topology of the large envelope protein of duck hepatitis B virus: determinants preventing pre-S translocation and glycosylation. J Virol 71:9434–9441[PubMed]
    [Google Scholar]
  36. Varnum S. M., Streblow D. N., Monroe M. E., Smith P., Auberry K. J., Paša-Tolic L., Wang D., Camp D. G. II, Rodland K., other authors. 2004; Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol 78:10960–10966 [View Article][PubMed]
    [Google Scholar]
  37. Venkatagopalan P., Daskalova S. M., Lopez L. A., Dolezal K. A., Hogue B. G. 2015; Coronavirus envelope (E) protein remains at the site of assembly. Virology 478:75–85 [View Article][PubMed]
    [Google Scholar]
  38. Vizcaíno J. A., Deutsch E. W., Wang R., Csordas A., Reisinger F., Ríos D., Dianes J. A., Sun Z., Farrah T., other authors. 2014; ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226 [View Article][PubMed]
    [Google Scholar]
  39. Vogels M. W., van Balkom B. W., Kaloyanova D. V., Batenburg J. J., Heck A. J., Helms J. B., Rottier P. J., de Haan C. A. 2011; Identification of host factors involved in coronavirus replication by quantitative proteomics analysis. Proteomics 11:64–80 [View Article][PubMed]
    [Google Scholar]
  40. Wang J., Fang S., Xiao H., Chen B., Tam J. P., Liu D. X. 2009; Interaction of the coronavirus infectious bronchitis virus membrane protein with β-actin and its implication in virion assembly and budding. PLoS One 4:e4908 [View Article][PubMed]
    [Google Scholar]
  41. Yi M., Schultz D. E., Lemon S. M. 2000; Functional significance of the interaction of hepatitis A virus RNA with glyceraldehyde 3-phosphate dehydrogenase (GAPDH): opposing effects of GAPDH and polypyrimidine tract binding protein on internal ribosome entry site function. J Virol 74:6459–6468 [View Article][PubMed]
    [Google Scholar]
  42. Zang W. Q., Fieno A. M., Grant R. A., Yen T. S. 1998; Identification of glyceraldehyde-3-phosphate dehydrogenase as a cellular protein that binds to the hepatitis B virus posttranscriptional regulatory element. Virology 248:46–52 [View Article][PubMed]
    [Google Scholar]
  43. Zhang C., Xue C., Li Y., Kong Q., Ren X., Li X., Shu D., Bi Y., Cao Y. 2010; Profiling of cellular proteins in porcine reproductive and respiratory syndrome virus virions by proteomics analysis. J Virol 7:242 [CrossRef]
    [Google Scholar]
  44. Ziebuhr J., Snijder E. J., Gorbalenya A. E. 2000; Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81:853–879 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000304
Loading
/content/journal/jgv/10.1099/jgv.0.000304
Loading

Data & Media loading...

Most cited Most Cited RSS feed