Direct infection of primary endothelial cells with human cytomegalovirus prevents angiogenesis and migration Free

Abstract

Human cytomegalovirus (hCMV) is a beta herpesvirus that establishes lifelong infection. Although the virus does not usually cause overt clinical symptoms in immunocompetent individuals it can have deleterious effects in immunocompromised patients, such as those on post-transplant medication or with HIV infection. hCMV is the most common congenital infection and can lead to serious fetal sequelae. Endothelial cells (ECs) are natural hosts for hCMV , therefore, investigations of how this cell type is modulated by infection are key to understanding hCMV pathogenesis. Previous studies have examined the effect of secretomes from hCMV-infected cells on EC angiogenesis, whereas the effect of direct infection on this process has not been so well investigated. Here, we show that placental ECs are viral targets during congenital infection and that vessels in infected tissue appear morphologically abnormal. We demonstrate that the clinical hCMV strain VR1814 impaired EC tube assembly in angiogenesis assays and inhibited wound healing ability in scratch assays. Secretomes from infected cultures did not impair angiogenesis of uninfected ECs, suggesting that cell-intrinsic changes, as opposed to secreted factors, were responsible. We observed viral gene transcription dependent downregulation of the expression of angiogenesis-associated genes, including angiopoietin-2, TEK receptor and vascular endothelial growth factor receptors. An alternative clinical hCMV stain, TB40E showed similar effects on EC angiogenesis. Together, our data indicate that direct infection with hCMV can induce an anti-migratory and anti-angiogenic EC phenotype, which could have a detrimental effect on the vasculature development in infected tissues.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000301
2015-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/12/3598.html?itemId=/content/journal/jgv/10.1099/jgv.0.000301&mimeType=html&fmt=ahah

References

  1. Adler S. P., Nigro G., Pereira L. 2007; Recent advances in the prevention and treatment of congenital cytomegalovirus infections. Semin Perinatol 31:10–18 [View Article][PubMed]
    [Google Scholar]
  2. Alcendor D. J., Charest A. M., Zhu W. Q., Vigil H. E., Knobel S. M. 2012; Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus. J Neuroinflammation 9:95 [View Article][PubMed]
    [Google Scholar]
  3. Benard M., Straat K., Omarsdottir S., Leghmari K., Bertrand J., Davrinche C., Duga-Neulat I., Söderberg-Nauclér C., Rahbar A., Casper C. 2014; Human cytomegalovirus infection induces leukotriene B4 and 5-lipoxygenase expression in human placentae and umbilical vein endothelial cells. Placenta 35:345–350 [View Article][PubMed]
    [Google Scholar]
  4. Bentz G. L., Yurochko A. D. 2008; Human CMV infection of endothelial cells induces an angiogenic response through viral binding to EGF receptor and beta1 and beta3 integrins. Proc Natl Acad Sci U S A 105:5531–5536 [View Article][PubMed]
    [Google Scholar]
  5. Botto S., Streblow D. N., DeFilippis V., White L., Kreklywich C. N., Smith P. P., Caposio P. 2011; IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood 117:352–361 [View Article][PubMed]
    [Google Scholar]
  6. Burton G. J., Charnock-Jones D. S., Jauniaux E. 2009; Regulation of vascular growth and function in the human placenta. Reproduction 138:895–902 [View Article][PubMed]
    [Google Scholar]
  7. Cai J., Ahmad S., Jiang W. G., Huang J., Kontos C. D., Boulton M., Ahmed A. 2003; Activation of vascular endothelial growth factor receptor-1 sustains angiogenesis and Bcl-2 expression via the phosphatidylinositol 3-kinase pathway in endothelial cells. Diabetes 52:2959–2968 [View Article][PubMed]
    [Google Scholar]
  8. Cannon M. J., Schmid D. S., Hyde T. B. 2010; Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol 20:202–213 [View Article][PubMed]
    [Google Scholar]
  9. Caposio P., Orloff S. L., Streblow D. N. 2011; The role of cytomegalovirus in angiogenesis. Virus Res 157:204–211 [View Article][PubMed]
    [Google Scholar]
  10. Carmeliet P., Jain R. K. 2011; Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307 [View Article][PubMed]
    [Google Scholar]
  11. Cheeran M. C., Lokensgard J. R., Schleiss M. R. 2009; Neuropathogenesis of congenital cytomegalovirus infection: disease mechanisms and prospects for intervention. Clin Microbiol Rev 22:99–126 [View Article][PubMed]
    [Google Scholar]
  12. Cooke B. M., Usami S., Perry I., Nash G. B. 1993; A simplified method for culture of endothelial cells and analysis of adhesion of blood cells under conditions of flow. Microvasc Res 45:33–45 [View Article][PubMed]
    [Google Scholar]
  13. de Vries J. J., Vossen A. C., Kroes A. C., van der Zeijst B. A. 2011; Implementing neonatal screening for congenital cytomegalovirus: addressing the deafness of policy makers. Rev Med Virol 21:54–61 [View Article][PubMed]
    [Google Scholar]
  14. Dollard S. C., Grosse S. D., Ross D. S. 2007; New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol 17:355–363 [View Article][PubMed]
    [Google Scholar]
  15. Dowd J. B., Aiello A. E., Alley D. E. 2009; Socioeconomic disparities in the seroprevalence of cytomegalovirus infection in the US population: NHANES III. Epidemiol Infect 137:58–65 [View Article][PubMed]
    [Google Scholar]
  16. Dumortier J., Streblow D. N., Moses A. V., Jacobs J. M., Kreklywich C. N., Camp D., Smith R. D., Orloff S. L., Nelson J. A. 2008; Human cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. J Virol 82:6524–6535 [View Article][PubMed]
    [Google Scholar]
  17. Felcht M., Luck R., Schering A., Seidel P., Srivastava K., Hu J., Bartol A., Kienast Y., Vettel C., other authors. 2012; Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest 122:1991–2005 [View Article][PubMed]
    [Google Scholar]
  18. Fiorentini S., Luganini A., Dell'Oste V., Lorusso B., Cervi E., Caccuri F., Bonardelli S., Landolfo S., Caruso A., Gribaudo G. 2011; Human cytomegalovirus productively infects lymphatic endothelial cells and induces a secretome that promotes angiogenesis and lymphangiogenesis through interleukin-6 and granulocyte-macrophage colony-stimulating factor. J Gen Virol 92:650–660 [View Article][PubMed]
    [Google Scholar]
  19. Fong G. H., Rossant J., Gertsenstein M., Breitman M. L. 1995; Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70 [View Article][PubMed]
    [Google Scholar]
  20. Frascaroli G., Sinzger C. 2014; Distinct properties of human cytomegalovirus strains and the appropriate choice of strains for particular studies. Methods Mol Biol 1119:29–46 [View Article][PubMed]
    [Google Scholar]
  21. Hirota K., Semenza G. L. 2006; Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59:15–26 [View Article][PubMed]
    [Google Scholar]
  22. Holmes K., Roberts O. L., Thomas A. M., Cross M. J. 2007; Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19:2003–2012 [View Article][PubMed]
    [Google Scholar]
  23. Huang H., Bhat A., Woodnutt G., Lappe R. 2010; Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer 10:575–585 [View Article][PubMed]
    [Google Scholar]
  24. Jarvis M. A., Nelson J. A. 2002; Human cytomegalovirus persistence and latency in endothelial cells and macrophages. Curr Opin Microbiol 5:403–407 [View Article][PubMed]
    [Google Scholar]
  25. Jarvis M. A., Nelson J. A. 2007; Human cytomegalovirus tropism for endothelial cells: not all endothelial cells are created equal. J Virol 81:2095–2101 [View Article][PubMed]
    [Google Scholar]
  26. Jeffery H. C., Söderberg-Naucler C., Butler L. M. 2013; Human cytomegalovirus induces a biphasic inflammatory response in primary endothelial cells. J Virol 87:6530–6535 [View Article][PubMed]
    [Google Scholar]
  27. Koressaar T., Remm M. 2007; Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291 [View Article][PubMed]
    [Google Scholar]
  28. Krock B. L., Skuli N., Simon M. C. 2011; Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2:1117–1133 [View Article][PubMed]
    [Google Scholar]
  29. Lamalice L., Le Boeuf F., Huot J. 2007; Endothelial cell migration during angiogenesis. Circ Res 100:782–794 [View Article][PubMed]
    [Google Scholar]
  30. Landolfo S., Gariglio M., Gribaudo G., Lembo D. 2003; The human cytomegalovirus. Pharmacol Ther 98:269–297 [View Article][PubMed]
    [Google Scholar]
  31. Lombardi G., Garofoli F., Stronati M. 2010; Congenital cytomegalovirus infection: treatment, sequelae and follow-up. J Matern Fetal Neonatal Med 23 Suppl 3:45–48 [CrossRef]
    [Google Scholar]
  32. MacManiman J. D., Meuser A., Botto S., Smith P. P., Liu F., Jarvis M. A., Nelson J. A., Caposio P. 2014; Human cytomegalovirus-encoded pUL7 is a novel CEACAM1-like molecule responsible for promotion of angiogenesis. MBio 5:e02035–e02014 [View Article][PubMed]
    [Google Scholar]
  33. Mandriota S. J., Pepper M. S. 1997; Vascular endothelial growth factor-induced in vitro angiogenesis and plasminogen activator expression are dependent on endogenous basic fibroblast growth factor. J Cell Sci 110:2293–2302[PubMed]
    [Google Scholar]
  34. Nagao K., Oka K. 2011; HIF-2 directly activates CD82 gene expression in endothelial cells. Biochem Biophys Res Commun 407:260–265 [View Article][PubMed]
    [Google Scholar]
  35. Orecchia A., Lacal P. M., Schietroma C., Morea V., Zambruno G., Failla C. M. 2003; Vascular endothelial growth factor receptor-1 is deposited in the extracellular matrix by endothelial cells and is a ligand for the alpha 5 beta 1 integrin. J Cell Sci 116:3479–3489 [View Article][PubMed]
    [Google Scholar]
  36. Otrock Z. K., Mahfouz R. A. R., Makarem J. A., Shamseddine A. I. 2007; Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis 39:212–220 [View Article][PubMed]
    [Google Scholar]
  37. Pereira R. D., De Long N. E., Wang R. C., Yazdi F. T., Holloway A. C., Raha S. 2015; Angiogenesis in the placenta: the role of reactive oxygen species signaling. BioMed Res Int 2015:814543[PubMed] [CrossRef]
    [Google Scholar]
  38. Qiu H., Strååt K., Rahbar A., Wan M., Söderberg-Nauclér C., Haeggström J. Z. 2008; Human CMV infection induces 5-lipoxygenase expression and leukotriene B4 production in vascular smooth muscle cells. J Exp Med 205:19–24[PubMed] [CrossRef]
    [Google Scholar]
  39. Reed L. J., Muench H. 1938; A simple method of estimating fifty per cent endpoint. Am J Hyg 27:493–497
    [Google Scholar]
  40. Santillan M. K., Santillan D. A., Sigmund C. D., Hunter S. K. 2009; From molecules to medicine: a future cure for preeclampsia?. Drug News Perspect 22:531–541 [View Article][PubMed]
    [Google Scholar]
  41. Sinzger C., Grefte A., Plachter B., Gouw A. S., The T. H., Jahn G. 1995; Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76:741–750 [View Article][PubMed]
    [Google Scholar]
  42. Skuli N., Liu L., Runge A., Wang T., Yuan L., Patel S., Iruela-Arispe L., Simon M. C., Keith B. 2009; Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood 114:469–477 [View Article][PubMed]
    [Google Scholar]
  43. Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., Rozen S. G. 2012; Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115 [View Article][PubMed]
    [Google Scholar]
  44. Weber B., Doerr H. W. 1994; Diagnosis and epidemiology of transfusion-associated human cytomegalovirus infection: recent developments. Infusionsther Transfusionsmed 21:(Suppl 1)32–39[PubMed]
    [Google Scholar]
  45. Wittko-Schneider I. M., Schneider F. T., Plate K. H. 2014; Cerebral angiogenesis during development: who is conducting the orchestra?. Methods Mol Biol 1135:3–20 [View Article][PubMed]
    [Google Scholar]
  46. Wong A. L., Haroon Z. A., Werner S., Dewhirst M. W., Greenberg C. S., Peters K. G. 1997; Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574 [View Article][PubMed]
    [Google Scholar]
  47. Xiong Y., Mahmood A., Chopp M. 2010; Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11:298–308[PubMed]
    [Google Scholar]
  48. Yamamoto-Tabata T., McDonagh S., Chang H. T., Fisher S., Pereira L. 2004; Human cytomegalovirus interleukin-10 downregulates metalloproteinase activity and impairs endothelial cell migration and placental cytotrophoblast invasiveness in vitro. J Virol 78:2831–2840 [View Article][PubMed]
    [Google Scholar]
  49. Yang Y., Sun M., Wang L., Jiao B. 2013; HIFs, angiogenesis, and cancer. J Cell Biochem 114:967–974 [View Article][PubMed]
    [Google Scholar]
  50. Zachary I., Gliki G. 2001; Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49:568–581 [View Article][PubMed]
    [Google Scholar]
  51. Zhang S., Liu L., Wang R., Tuo H., Guo Y., Yi L., Wang D., Wang J. 2013; MicroRNA-217 promotes angiogenesis of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and FOXO3A. PLoS One 8:e83620 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000301
Loading
/content/journal/jgv/10.1099/jgv.0.000301
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed