1887

Abstract

Mesenchymal stem cells (MSCs) can be infected with prions and have been proposed as cell-based models for prion replication. In addition, autologous MSCs are of interest for cell therapy in neurodegenerative diseases. To the best of our knowledge, the effect of prion diseases on the characteristics of these cells has never been investigated. Here, we analysed the properties of MSCs obtained from bone marrow (BM-MSCs) and peripheral blood (PB-MSCs) of sheep naturally infected with scrapie — a large mammal model for the study of prion diseases. After three passages of expansion, MSCs derived from scrapie animals displayed similar adipogenic, chondrogenic and osteogenic differentiation ability as cells from healthy controls, although a subtle decrease in the proliferation potential was observed. Exceptionally, mesenchymal markers such as were significantly upregulated at the transcript level compared with controls. Scrapie MSCs were able to transdifferentiate into neuron-like cells, but displayed lower levels of neurogenic markers at basal conditions, which could limit this potential. The expression levels of cellular prion protein (PrP) were highly variable between cultures, and no significant differences were observed between control and scrapie-derived MSCs. However, during neurogenic differentiation the expression of PrP was upregulated in MSCs. This characteristic could be useful for developing models for prion replication. Despite the infectivity reported for MSCs obtained from scrapie-infected mice and Creutzfeldt–Jakob disease patients, protein misfolding cyclic amplification did not detect PrP in BM- or PB-MSCs from scrapie-infected sheep, which limits their use for diagnosis for scrapie.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000292
2015-12-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/12/3715.html?itemId=/content/journal/jgv/10.1099/jgv.0.000292&mimeType=html&fmt=ahah

References

  1. Akimov S. , Yakovleva O. , Vasilyeva I. , McKenzie C. , Cervenakova L. . ( 2008;). Persistent propagation of variant Creutzfeldt-Jakob disease agent in murine spleen stromal cell culture with features of mesenchymal stem cells. J Virol 82: 10959–10962 [CrossRef] [PubMed]
    [Google Scholar]
  2. Akimov S. , Vasilyeva I. , Yakovleva O. , McKenzie C. , Cervenakova L. . ( 2009;). Murine bone marrow stromal cell culture with features of mesenchymal stem cells susceptible to mouse-adapted human TSE agent, Fukuoka-1. Folia Neuropathol 47: 205–214 [PubMed].
    [Google Scholar]
  3. Andréoletti O. , Litaise C. , Simmons H. , Corbière F. , Lugan S. , Costes P. , Schelcher F. , Vilette D. , Grassi J. , Lacroux C. . ( 2012;). Highly efficient prion transmission by blood transfusion. PLoS Pathog 8: e1002782 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bate C. , Langeveld J. , Williams A. . ( 2004;). Manipulation of PrPres production in scrapie-infected neuroblastoma cells. J Neurosci Methods 138: 217–223 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bolea R. , Monleón E. , Schiller I. , Raeber A. J. , Acín C. , Monzón M. , Martín-Burriel I. , Struckmeyer T. , Oesch B. , Badiola J. J. . ( 2005;). Comparison of immunohistochemistry and two rapid tests for detection of abnormal prion protein in different brain regions of sheep with typical scrapie. J Vet Diagn Invest 17: 467–469 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bosque P. J. , Prusiner S. B. . ( 2000;). Cultured cell sublines highly susceptible to prion infection. J Virol 74: 4377–4386 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bossolasco P. , Cova L. , Calzarossa C. , Servida F. , Mencacci N. E. , Onida F. , Polli E. , Lambertenghi Deliliers G. , Silani V. . ( 2010;). Metalloproteinase alterations in the bone marrow of ALS patients. J Mol Med (Berl) 88: 553–564 [CrossRef] [PubMed].
    [Google Scholar]
  8. Boxall S. A. , Jones E. . ( 2012;). Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int 2012: 975871 [CrossRef] [PubMed].
    [Google Scholar]
  9. Brown P. , Gibbs C. J. Jr , Rodgers-Johnson P. , Asher D. M. , Sulima M. P. , Bacote A. , Goldfarb L. G. , Gajdusek D. C. . ( 1994;). Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol 35: 513–529 [CrossRef] [PubMed].
    [Google Scholar]
  10. Castilla J. , Morales R. , Saá P. , Barria M. , Gambetti P. , Soto C. . ( 2008;). Cell-free propagation of prion strains. EMBO J 27: 2557–2566 [CrossRef] [PubMed].
    [Google Scholar]
  11. Cervenakova L. , Akimov S. , Vasilyeva I. , Yakovleva O. , McKenzie C. , Cervenak J. , Piccardo P. , Asher D. M. . ( 2011;). Fukuoka-1 strain of transmissible spongiform encephalopathy agent infects murine bone marrow-derived cells with features of mesenchymal stem cells. Transfusion 51: 1755–1768 [CrossRef] [PubMed].
    [Google Scholar]
  12. Chen J. , Chopp M. . ( 2006;). Neurorestorative treatment of stroke: cell and pharmacological approaches. NeuroRx 3: 466–473 [CrossRef] [PubMed].
    [Google Scholar]
  13. Chen J. , Li Y. , Wang L. , Lu M. , Zhang X. , Chopp M. . ( 2001;). Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 189: 49–57 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dantuma E. , Merchant S. , Sugaya K. . ( 2010;). Stem cells for the treatment of neurodegenerative diseases. Stem Cell Res Ther 1: 37 [CrossRef] [PubMed].
    [Google Scholar]
  15. Detwiler L. A. . ( 1992;). Scrapie. Rev Sci Tech 11: 491–537 [PubMed].
    [Google Scholar]
  16. Dominici M. , Le Blanc K. , Mueller I. , Slaper-Cortenbach I. , Marini F. , Krause D. , Deans R. , Keating A. , Prockop D. J. , Horwitz E. . ( 2006;). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317 [CrossRef] [PubMed].
    [Google Scholar]
  17. Douet J. Y. , Zafar S. , Perret-Liaudet A. , Lacroux C. , Lugan S. , Aron N. , Cassard H. , Ponto C. , Corbière F. , other authors . ( 2014;). Detection of infectivity in blood of persons with variant and sporadic Creutzfeldt-Jakob disease. Emerg Infect Dis 20: 114–117 [CrossRef] [PubMed].
    [Google Scholar]
  18. Ferrero I. , Mazzini L. , Rustichelli D. , Gunetti M. , Mareschi K. , Testa L. , Nasuelli N. , Oggioni G. D. , Fagioli F. . ( 2008;). Bone marrow mesenchymal stem cells from healthy donors and sporadic amyotrophic lateral sclerosis patients. Cell Transplant 17: 255–266 [CrossRef] [PubMed].
    [Google Scholar]
  19. Filali H. , Vidal E. , Bolea R. , Márquez M. , Marco P. , Vargas A. , Pumarola M. , Martin-Burriel I. , Badiola J. J. . ( 2013;). Gene and protein patterns of potential prion-related markers in the central nervous system of clinical and preclinical infected sheep. Vet Res 44: 14 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hadlow W. J. , Kennedy R. C. , Race R. E. . ( 1982;). Natural infection of Suffolk sheep with scrapie virus. J Infect Dis 146: 657–664 [CrossRef] [PubMed].
    [Google Scholar]
  21. Halliez S. , Jaumain E. , Huor A. , Douet J. Y. , Lugan S. , Cassard H. , Lacroux C. , Béringue V. , Andréoletti O. , Vilette D. . ( 2014;). White blood cell-based detection of asymptomatic scrapie infection by ex vivo assays. PLoS One 9: e104287 [CrossRef] [PubMed].
    [Google Scholar]
  22. Przyborski S. A. , Hardy S. A. , Maltman D. J. . ( 2008;). Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther 3: 43–52 [CrossRef] [PubMed].
    [Google Scholar]
  23. Jäger M. , Bachmann R. , Scharfstädt A. , Krauspe R. . ( 2006;). Ovine cord blood accommodates multipotent mesenchymal progenitor cells. In Vivo 20: 205–214 [PubMed].
    [Google Scholar]
  24. Lacroux C. , Vilette D. , Fernández-Borges N. , Litaise C. , Lugan S. , Morel N. , Corbière F. , Simon S. , Simmons H. , other authors . ( 2012;). Prionemia and leukocyte-platelet-associated infectivity in sheep transmissible spongiform encephalopathy models. J Virol 86: 2056–2066 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lee Y. J. , Baskakov I. V. . ( 2013;). The cellular form of the prion protein is involved in controlling cell cycle dynamics, self-renewal, and the fate of human embryonic stem cell differentiation. J Neurochem 124: 310–322 [CrossRef] [PubMed].
    [Google Scholar]
  26. Lei J. , Hui D. , Huang W. , Liao Y. , Yang L. , Liu L. , Zhang Q. , Qi G. , Song W. , other authors . ( 2013;). Heterogeneity of the biological properties and gene expression profiles of murine bone marrow stromal cells. Int J Biochem Cell Biol 45: 2431–2443 [CrossRef] [PubMed].
    [Google Scholar]
  27. Lin C. S. , Ning H. , Lin G. , Lue T. F. . ( 2012;). Is CD34 truly a negative marker for mesenchymal stromal cells?. Cytotherapy 14: 1159–1163 [CrossRef] [PubMed].
    [Google Scholar]
  28. Lindvall O. , Kokaia Z. . ( 2010;). Stem cells in human neurodegenerative disorders – time for clinical translation?. J Clin Invest 120: 29–40 [CrossRef] [PubMed].
    [Google Scholar]
  29. Loubet D. , Dakowski C. , Pietri M. , Pradines E. , Bernard S. , Callebert J. , Ardila-Osorio H. , Mouillet-Richard S. , Launay J. M. , other authors . ( 2012;). Neuritogenesis: the prion protein controls β1 integrin signaling activity. FASEB J 26: 678–690 [CrossRef] [PubMed].
    [Google Scholar]
  30. Lyahyai J. , Serrano C. , Ranera B. , Badiola J. J. , Zaragoza P. , Martin-Burriel I. . ( 2010;). Effect of scrapie on the stability of housekeeping genes. Anim Biotechnol 21: 1–13 [CrossRef] [PubMed].
    [Google Scholar]
  31. Lyahyai J. , Mediano D. R. , Ranera B. , Sanz A. , Remacha A. R. , Bolea R. , Zaragoza P. , Rodellar C. , Martín-Burriel I. . ( 2012;). Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood. BMC Vet Res 8: 169 [CrossRef] [PubMed].
    [Google Scholar]
  32. Mahal S. P. , Baker C. A. , Demczyk C. A. , Smith E. W. , Julius C. , Weissmann C. . ( 2007;). Prion strain discrimination in cell culture: the cell panel assay. Proc Natl Acad Sci U S A 104: 20908–20913 [CrossRef] [PubMed].
    [Google Scholar]
  33. Mallam E. , Kemp K. , Wilkins A. , Rice C. , Scolding N. . ( 2010;). Characterization of in vitro expanded bone marrow-derived mesenchymal stem cells from patients with multiple sclerosis. Mult Scler 16: 909–918 [CrossRef] [PubMed].
    [Google Scholar]
  34. McCarty R. C. , Gronthos S. , Zannettino A. C. , Foster B. K. , Xian C. J. . ( 2009;). Characterisation and developmental potential of ovine bone marrow derived mesenchymal stem cells. J Cell Physiol 219: 324–333 [CrossRef] [PubMed].
    [Google Scholar]
  35. Mediano D. R. , Sanz-Rubio D. , Ranera B. , Bolea R. , Martin-Burriel I. . ( 2015;). The potential of mesenchymal stem cell in prion research. Zoonoses Public Health 62: 165–178 [PubMed].[CrossRef]
    [Google Scholar]
  36. Mohanty S. T. , Cairney C. J. , Chantry A. D. , Madan S. , Fernandes J. A. , Howe S. J. , Moore H. D. , Thompson M. J. , Chen B. , other authors . ( 2012;). A small molecule modulator of prion protein increases human mesenchymal stem cell lifespan, ex vivo expansion, and engraftment to bone marrow in NOD/SCID mice. Stem Cells 30: 1134–1143 [CrossRef] [PubMed].
    [Google Scholar]
  37. Montzka K. , Lassonczyk N. , Tschöke B. , Neuss S. , Führmann T. , Franzen R. , Smeets R. , Brook G. A. , Wöltje M. . ( 2009;). Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. BMC Neurosci 10: 16 [CrossRef] [PubMed].
    [Google Scholar]
  38. Mrugala D. , Bony C. , Neves N. , Caillot L. , Fabre S. , Moukoko D. , Jorgensen C. , Noël D. . ( 2008;). Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis 67: 288–295 [CrossRef] [PubMed].
    [Google Scholar]
  39. Prusiner S. B. . ( 1991;). Molecular biology of prion diseases. Science 252: 1515–1522 [CrossRef] [PubMed].
    [Google Scholar]
  40. Przyborski S. A. , Hardy S. A. , Maltman D. J. . ( 2008;). Mesenchymal stem cells as mediators of neural differentiation. Curr Stem Cell Res Ther 3: 43–52 [CrossRef] [PubMed].
    [Google Scholar]
  41. Ranera B. , Lyahyai J. , Romero A. , Vázquez F. J. , Remacha A. R. , Bernal M. L. , Zaragoza P. , Rodellar C. , Martín-Burriel I. . ( 2011;). Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet Immunol Immunopathol 144: 147–154 [CrossRef] [PubMed].
    [Google Scholar]
  42. Ranera B. , Ordovás L. , Lyahyai J. , Bernal M. L. , Fernandes F. , Remacha A. R. , Romero A. , Vázquez F. J. , Osta R. , other authors . ( 2012;). Comparative study of equine bone marrow and adipose tissue-derived mesenchymal stromal cells. Equine Vet J 44: 33–42 [CrossRef] [PubMed].
    [Google Scholar]
  43. Safar J. , Roller P. P. , Gajdusek D. C. , Gibbs C. J. Jr . ( 1993;). Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J Biol Chem 268: 20276–20284 [PubMed].
    [Google Scholar]
  44. Siegel G. , Kluba T. , Hermanutz-Klein U. , Bieback K. , Northoff H. , Schäfer R. . ( 2013;). Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med 11: 146 [CrossRef] [PubMed].
    [Google Scholar]
  45. Song C. H. , Honmou O. , Ohsawa N. , Nakamura K. , Hamada H. , Furuoka H. , Hasebe R. , Horiuchi M. . ( 2009;). Effect of transplantation of bone marrow-derived mesenchymal stem cells on mice infected with prions. J Virol 83: 5918–5927 [CrossRef] [PubMed].
    [Google Scholar]
  46. Song C. H. , Honmou O. , Furuoka H. , Horiuchi M. . ( 2011;). Identification of chemoattractive factors involved in the migration of bone marrow-derived mesenchymal stem cells to brain lesions caused by prions. J Virol 85: 11069–11078 [CrossRef] [PubMed].
    [Google Scholar]
  47. Takakura Y. , Yamaguchi N. , Nakagaki T. , Satoh K. , Kira J. , Nishida N. . ( 2008;). Bone marrow stroma cells are susceptible to prion infection. Biochem Biophys Res Commun 377: 957–961 [CrossRef] [PubMed].
    [Google Scholar]
  48. Tanna T. , Sachan V. . ( 2014;). Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr Stem Cell Res Ther 9: 513–521 [CrossRef] [PubMed].
    [Google Scholar]
  49. Wagner W. , Bork S. , Horn P. , Krunic D. , Walenda T. , Diehlmann A. , Benes V. , Blake J. , Huber F. X. , other authors . ( 2009;). Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 4: e5846 [CrossRef] [PubMed].
    [Google Scholar]
  50. Wislet-Gendebien S. , Leprince P. , Moonen G. , Rogister B. . ( 2003;). Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J Cell Sci 116: 3295–3302 [CrossRef] [PubMed].
    [Google Scholar]
  51. Yeh S. P. , Chang J. G. , Lo W. J. , Liaw Y. C. , Lin C. L. , Lee C. C. , Chiu C. F. . ( 2006;). Induction of CD45 expression on bone marrow-derived mesenchymal stem cells. Leukemia 20: 894–896 [CrossRef] [PubMed].
    [Google Scholar]
  52. Zhang C. C. , Steele A. D. , Lindquist S. , Lodish H. F. . ( 2006;). Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci U S A 103: 2184–2189 [CrossRef] [PubMed].
    [Google Scholar]
  53. Zhang Z. , Wang X. , Wang S. . ( 2008;). Isolation and characterization of mesenchymal stem cells derived from bone marrow of patients with Parkinson's disease. In Vitro Cell Dev Biol Anim 44: 169–177 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000292
Loading
/content/journal/jgv/10.1099/jgv.0.000292
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error