1887

Abstract

The genome sequence, genetic characterization and gene function of myovirus isolated from Lake Dianchi in China (MaMV-DC) have been analysed. The genome DNA is 169 223 bp long, with 170 predicted protein-coding genes () and a tRNA gene. About one-sixth of these genes have homologues in the host cyanobacteria . The genome carries a gene homologous to host , which encodes a protein involved in the degradation of cyanobacterial phycobilisome. Its expression during MaMV-DC infection was confirmed by reverse transcriptase PCR and Western blot detection and abundant expression was companied by the significant decline of phycocyanin content and massive release of progeny MaMV-DC. In addition, expressing MaMV-DC reduced the phycocyanin peak and the phycocyanin to chlorophyll ratio in model cyanobacteria. These results confirm that horizontal gene transfer events have occurred between cyanobacterial host and cyanomyovirus and suggest that MaMV-DC carrying host-derived genes (such as , that codes for NblA) is responsible for more efficient expression of cyanophage genes and release of progeny cyanophage. This study provides novel insight into the horizontal gene transfer in cyanophage and the interactions between cyanophage and their host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000290
2015-12-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/12/3681.html?itemId=/content/journal/jgv/10.1099/jgv.0.000290&mimeType=html&fmt=ahah

References

  1. Baier K. , Nicklisch S. , Grundner C. , Reinecke J. , Lockau W. . ( 2001;). Expression of two nblA-homologous genes is required for phycobilisome degradation in nitrogen-starved Synechocystis sp. PCC6803. FEMS Microbiol Lett 195: 35–39 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baier K. , Lehmann H. , Stephan D. P. , Lockau W. . ( 2004;). NblA is essential for phycobilisome degradation in Anabaena sp. strain PCC 7120 but not for development of functional heterocysts. Microbiology 150: 2739–2749 [CrossRef] [PubMed].
    [Google Scholar]
  3. Besemer J. , Lomsadze A. , Borodovsky M. . ( 2001;). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29: 2607–2618 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brussaard C. P. , Wilhelm S. W. , Thingstad F. , Weinbauer M. G. , Bratbak G. , Heldal M. , Kimmance S. A. , Middelboe M. , Nagasaki K. , other authors . ( 2008;). Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J 2: 575–578 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chan Y. W. , Millard A. D. , Wheatley P. J. , Holmes A. B. , Mohr R. , Whitworth A. L. , Mann N. H. , Larkum A. W. , Hess W. R. , other authors . ( 2015;). Genomic and proteomic characterization of two novel siphovirus infecting the sedentary facultative epibiont cyanobacterium Acaryochloris marina . Environ Microbiol [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen F. , Lu J. . ( 2002;). Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol 68: 2589–2594 [CrossRef] [PubMed].
    [Google Scholar]
  7. Chénard C. , Chan A. M. , Vincent W. F. , Suttle C. A. . ( 2015;). Polar freshwater cyanophage S-EIV1 represents a new widespread evolutionary lineage of phages. ISME J 9: 2046–2058 [CrossRef] [PubMed].
    [Google Scholar]
  8. Clokie M. R. , Millard A. D. , Wilson W. H. , Mann N. H. . ( 2003;). Encapsidation of host DNA by bacteriophages infecting marine Synechococcus strains. FEMS Microbiol Ecol 46: 349–352 [CrossRef] [PubMed].
    [Google Scholar]
  9. Davis T. W. , Berry D. L. , Boyer G. L. , Gobler C. J. . ( 2009;). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8: 715–725 [CrossRef].
    [Google Scholar]
  10. Dreher T. W. , Brown N. , Bozarth C. S. , Schwartz A. D. , Riscoe E. , Thrash C. , Bennett S. E. , Tzeng S. C. , Maier C. S. . ( 2011;). A freshwater cyanophage whose genome indicates close relationships to photosynthetic marine cyanomyophages. Environ Microbiol 13: 1858–1874 [CrossRef] [PubMed].
    [Google Scholar]
  11. Fischer M. G. , Suttle C. A. . ( 2011;). A virophage at the origin of large DNA transposons. Science 332: 231–234 [CrossRef] [PubMed].
    [Google Scholar]
  12. Gao H. , Xu X. . ( 2009;). Depletion of Vipp1 in Synechocystis sp. PCC 6803 affects photosynthetic activity before the loss of thylakoid membranes. FEMS Microbiol Lett 292: 63–70 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gao E. B. , Gui J. F. , Zhang Q. Y. . ( 2012;). A novel cyanophage with a cyanobacterial nonbleaching protein A gene in the genome. J Virol 86: 236–245 [CrossRef] [PubMed].
    [Google Scholar]
  14. Henn M. R. , Sullivan M. B. , Stange-Thomann N. , Osburne M. S. , Berlin A. M. , Kelly L. , Yandava C. , Kodira C. , Zeng Q. , other authors . ( 2010;). Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS One 5: e9083 [CrossRef] [PubMed].
    [Google Scholar]
  15. Huang S. , Zhang S. , Jiao N. , Chen F. . ( 2015;). Marine cyanophages demonstrate biogeographic patterns throughout the global ocean. Appl Environ Microbiol 81: 441–452 [CrossRef] [PubMed].
    [Google Scholar]
  16. Jameson E. , Joint I. , Mann N. H. , Mühling M. . ( 2008;). Application of a novel rpoC1-RFLP approach reveals that marine Prochlorococcus populations in the Atlantic gyres are composed of greater microdiversity than previously described. Microb Ecol 55: 141–151 [CrossRef] [PubMed].
    [Google Scholar]
  17. Karradt A. , Sobanski J. , Mattow J. , Lockau W. , Baier K. . ( 2008;). NblA, a key protein of phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a cyanobacterial Clp protease. J Biol Chem 283: 32394–32403 [CrossRef] [PubMed].
    [Google Scholar]
  18. Li S. , Gao E. B. , Ou T. , Zhang Q. Y. . ( 2013a;). Cloning and expression analysis of major capsid protein gene, endopeptidase and holin gene of cyanophage PaV-LD. Acta Hydrobiologica Sinica 37: 252–259 (Chinese with English abstract).
    [Google Scholar]
  19. Li S. , Ou T. , Zhang Q. . ( 2013b;). Two virus-like particles that cause lytic infections in freshwater cyanobacteria. Virol Sin 28: 303–305 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lindell D. , Sullivan M. B. , Johnson Z. I. , Tolonen A. C. , Rohwer F. , Chisholm S. W. . ( 2004;). Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci U S A 101: 11013–11018 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lindell D. , Jaffe J. D. , Johnson Z. I. , Church G. M. , Chisholm S. W. . ( 2005;). Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438: 86–89 [CrossRef] [PubMed].
    [Google Scholar]
  22. Liu Y. M. , Yuan X. P. , Zhang Q. Y. . ( 2006;). Spatial distribution and morphologic diversity of virioplankton in Lake Donghu, China. Acta Oecol 29: 328–334 [CrossRef].
    [Google Scholar]
  23. Lowe T. M. , Eddy S. R. . ( 1997;). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964 [CrossRef] [PubMed].
    [Google Scholar]
  24. Mann N. H. . ( 2003;). Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol Rev 27: 17–34 [CrossRef] [PubMed].
    [Google Scholar]
  25. Mann N. H. , Clokie M. R. . ( 2012;). Cyanophages. . In Ecology of Cyanobacteria II, pp. 535–557. Edited by Whitton B. A. . Dordrecht: [CrossRef] Springer;.
    [Google Scholar]
  26. Mann N. H. , Cook A. , Millard A. , Bailey S. , Clokie M. . ( 2003;). Marine ecosystems: bacterial photosynthesis genes in a virus. Nature 424: 741–741 [CrossRef] [PubMed].
    [Google Scholar]
  27. Mann N. H. , Clokie M. R. , Millard A. , Cook A. , Wilson W. H. , Wheatley P. J. , Letarov A. , Krisch H. M. . ( 2005;). The genome of S-PM2, a photosynthetic T4-type bacteriophage that infects marine Synechococcus strains. J Bacteriol 187: 3188–3200 [CrossRef] [PubMed].
    [Google Scholar]
  28. Millard A. D. , Mann N. H. . ( 2006;). A temporal and spatial investigation of cyanophage abundance in the Gulf of Aqaba, Red Sea. J Mar Biol Assoc U K 86: 507–515 [CrossRef].
    [Google Scholar]
  29. Millard A. , Clokie M. R. , Shub D. A. , Mann N. H. . ( 2004;). Genetic organization of the psbAD region in phages infecting marine Synechococcus strains. Proc Natl Acad Sci U S A 101: 11007–11012 [CrossRef] [PubMed].
    [Google Scholar]
  30. Millard A. D. , Zwirglmaier K. , Downey M. J. , Mann N. H. , Scanlan D. J. . ( 2009;). Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution. Environ Microbiol 11: 2370–2387 [CrossRef] [PubMed].
    [Google Scholar]
  31. Mühling M. , Fuller N. J. , Millard A. , Somerfield P. J. , Marie D. , Wilson W. H. , Scanlan D. J. , Post A. F. , Joint I. , Mann N. H. . ( 2005;). Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environ Microbiol 7: 499–508 [CrossRef] [PubMed].
    [Google Scholar]
  32. Ochman H. , Lawrence J. G. , Groisman E. A. . ( 2000;). Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304 [CrossRef] [PubMed].
    [Google Scholar]
  33. Ou T. , Li S. , Liao X. , Zhang Q. . ( 2013;). Cultivation and characterization of the MaMV-DC cyanophage that infects bloom-forming cyanobacterium Microcystis aeruginosa . Virol Sin 28: 266–271 [CrossRef] [PubMed].
    [Google Scholar]
  34. Ou T. , Liao X. Y. , Gao X. C. , Xu X. -D. , Zhang Q. Y. . ( 2015;). Unraveling the genome structure of cyanobacterial podovirus A-4L with long direct terminal repeats. Virus Res 203: 4–9 [CrossRef] [PubMed].
    [Google Scholar]
  35. Philosof A. , Battchikova N. , Aro E. -M. , Béjà O. . ( 2011;). Marine cyanophages: tinkering with the electron transport chain. ISME J 5: 1568–1570 [CrossRef] [PubMed].
    [Google Scholar]
  36. Pope W. H. , Weigele P. R. , Chang J. , Pedulla M. L. , Ford M. E. , Houtz J. M. , Jiang W. , Chiu W. , Hatfull G. F. , other authors . ( 2007;). Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a horned bacteriophage of marine synechococcus. J Mol Biol 368: 966–981 [CrossRef] [PubMed].
    [Google Scholar]
  37. Puxty R. J. , Millard A. D. , Evans D. J. , Scanlan D. J. . ( 2014;). Shedding new light on viral photosynthesis. Photosynth Res 126: 1–27 [PubMed].
    [Google Scholar]
  38. Schägger H. . ( 2006;). Tricine-SDS-PAGE. Nat Protoc 1: 16–22 [CrossRef] [PubMed].
    [Google Scholar]
  39. Sharon I. , Alperovitch A. , Rohwer F. , Haynes M. , Glaser F. , Atamna-Ismaeel N. , Pinter R. Y. , Partensky F. , Koonin E. V. . ( 2009;). Photosystem I gene cassettes are present in marine virus genomes. Nature 461: 258–262 [CrossRef] [PubMed].
    [Google Scholar]
  40. Silander O. K. , Weinreich D. M. , Wright K. M. , O'Keefe K. J. , Rang C. U. , Turner P. E. , Chao L. . ( 2005;). Widespread genetic exchange among terrestrial bacteriophages. Proc Natl Acad Sci USA 102: 19009–19014 [CrossRef] [PubMed].
    [Google Scholar]
  41. Sorek R. , Kunin V. , Hugenholtz P. . ( 2008;). CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6: 181–186 [CrossRef] [PubMed].
    [Google Scholar]
  42. Sullivan M. B. , Coleman M. L. , Weigele P. , Rohwer F. , Chisholm S. W. . ( 2005;). Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol 3: e144 [PubMed].[CrossRef]
    [Google Scholar]
  43. Sullivan M. B. , Lindell D. , Lee J. A. , Thompson L. R. , Bielawski J. P. , Chisholm S. W. . ( 2006;). Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4: e234 [CrossRef] [PubMed].
    [Google Scholar]
  44. Sullivan M. B. , Huang K. H. , Ignacio-Espinoza J. C. , Berlin A. M. , Kelly L. , Weigele P. R. , DeFrancesco A. S. , Kern S. E. , Thompson L. R. , other authors . ( 2010;). Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol 12: 3035–3056 [CrossRef] [PubMed].
    [Google Scholar]
  45. Suttle C. A. . ( 2002;). Cyanophages and their role in the ecology of cyanobacteria. . In The Ecology of Cyanobacteria, pp. 563–589. Edited by Whitton B. A. , Potts M. . Dordrecht: [CrossRef] Springer;.
    [Google Scholar]
  46. Suttle C. A. , Chan A. M. . ( 1994;). Dynamics and distribution of cyanophages and their effect on marine Synechococcus spp. Appl Environ Microbiol 60: 3167–3174 [PubMed].
    [Google Scholar]
  47. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24: 1596–1599 [CrossRef] [PubMed].
    [Google Scholar]
  48. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  49. Thompson L. R. , Zeng Q. , Kelly L. , Huang K. H. , Singer A. U. , Stubbe J. , Chisholm S. W. . ( 2011;). Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci U S A 108: E757–E764 [CrossRef] [PubMed].
    [Google Scholar]
  50. Tyson G. W. , Banfield J. F. . ( 2008;). Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10: 200–207 [PubMed].
    [Google Scholar]
  51. Weigele P. R. , Pope W. H. , Pedulla M. L. , Houtz J. M. , Smith A. L. , Conway J. F. , King J. , Hatfull G. F. , Lawrence J. G. , Hendrix R. W. . ( 2007;). Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus . Environ Microbiol 9: 1675–1695 [CrossRef] [PubMed].
    [Google Scholar]
  52. Williams J. G. . ( 1988;). Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol 167: 766–778 [CrossRef].
    [Google Scholar]
  53. Wilson W. H. , Joint I. R. , Carr N. G. , Mann N. H. . ( 1993;). Isolation and molecular characterization of five marine cyanophages propagated on Synechococcus sp. strain WH7803. Appl Environ Microbiol 59: 3736–3743 [PubMed].
    [Google Scholar]
  54. Wu Z. X. , Gan N. Q. , Song L. R. . ( 2007;). Genetic diversity: geographical distribution and toxin profiles of Microcystis strains (Cyanobacteria) in China. J Integr Plant Biol 49: 262–269 [CrossRef].
    [Google Scholar]
  55. Yang C. , Lin F. , Li Q. , Li T. , Zhao J. . ( 2015;). Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium. Front Microbiol 6: 394 [CrossRef] [PubMed].
    [Google Scholar]
  56. Yoshida T. , Takashima Y. , Tomaru Y. , Shirai Y. , Takao Y. , Hiroishi S. , Nagasaki K. . ( 2006;). Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa . Appl Environ Microbiol 72: 1239–1247 [CrossRef] [PubMed].
    [Google Scholar]
  57. Yoshida T. , Nagasaki K. , Takashima Y. , Shirai Y. , Tomaru Y. , Takao Y. , Sakamoto S. , Hiroishi S. , Ogata H. . ( 2008;). Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol 190: 1762–1772 [CrossRef] [PubMed].
    [Google Scholar]
  58. Zhang Q. Y. . ( 2014;). Advances in studies on biodiversity of cyanophages. Microbiol China 41: 545–559 (Chinese with English abstract).
    [Google Scholar]
  59. Zhang Q. Y. , Gui J. F. . ( 2009;). One kind of strategic bio-resources that cannot be ignored – freshwater and marine viruses and their roles in the global ecosystem. Bulletin of Chinese Academy of Sciences 24: 520–526 (Chinese with English abstract).
    [Google Scholar]
  60. Zhang Q. Y. , Gui J. F. . ( 2012;). Diversity of virioplankton. In. Atlas of Aquatic Viruses and Viral Diseases, pp. 404–418 Beijing: Science Press;.
    [Google Scholar]
  61. Zhao Z. , Ke F. , Gui J. , Zhang Q. . ( 2007;). Characterization of an early gene encoding for dUTPase in Rana grylio virus. Virus Res 123: 128–137 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000290
Loading
/content/journal/jgv/10.1099/jgv.0.000290
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error