1887

Abstract

NK-cells have traditionally been viewed as innate effector lymphocytes that serve as a first line of defence against a range of viruses and tumours. More recently, the importance of NK-cell immunoregulatory functions has been highlighted. NK-cells can inhibit antiviral T-cell responses, and also play an important role in controlling harmful T-cell activity in autoimmunity and transplantation settings. Moreover, immunopathological effects of NK-cells during infection have been reported. Nevertheless, the phenotype and function of NK-cells in the thymus during influenza virus infection is not understood. In the present study, we demonstrated that influenza A virus (IAV) infection in mice led to severe thymic atrophy caused by increased thymic T-cell apoptosis and suppressed proliferation.  We found that NK-cells played a critical role in this phenotype. IFN-γ production by NK-cells was a contributing factor for thymic atrophy during IAV infection. Taken together, our data indicate that NK-cells are involved in the thymic atrophy associated with IAV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000276
2015-11-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/11/3223.html?itemId=/content/journal/jgv/10.1099/jgv.0.000276&mimeType=html&fmt=ahah

References

  1. Abdul-Careem M.F., Mian M.F., Yue G., Gillgrass A., Chenoweth M.J., Barra N.G., Chew M.V., Chan T., Al-Garawi A.A., other authors. 2012; Critical role of natural killer cells in lung immunopathology during influenza infection in mice. J Infect Dis 206:167–177 [CrossRef][PubMed]
    [Google Scholar]
  2. Adib-Conquy M., Scott-Algara D., Cavaillon J.M., Souza-Fonseca-Guimaraes F. 2014; TLR-mediated activation of NK cells and their role in bacterial/viral immune responses in mammals. Immunol Cell Biol 92:256–262 [CrossRef][PubMed]
    [Google Scholar]
  3. Biron C.A., Byron K.S., Sullivan J.L. 1989; Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 320:1731–1735 [CrossRef][PubMed]
    [Google Scholar]
  4. Borges M., Barreira-Silva P., Flórido M., Jordan M.B., Correia-Neves M., Appelberg R. 2012; Molecular and cellular mechanisms of Mycobacterium avium-induced thymic atrophy. J Immunol 189:3600–3608 [CrossRef][PubMed]
    [Google Scholar]
  5. Cao B., Li X.W., Mao Y., Wang J., Lu H.Z., Chen Y.S., Liang Z.A., Liang L., Zhang S.J., other authors. 2009; Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. N Engl J Med 361:2507–2517 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen W., Kuolee R., Austin J.W., Shen H., Che Y., Conlan J.W. 2005; Low dose aerosol infection of mice with virulent type A Francisella tularensis induces severe thymus atrophy and CD4+CD8+ thymocyte depletion. Microb Pathog 39:189–196 [CrossRef][PubMed]
    [Google Scholar]
  7. Chowell G., Bertozzi S.M., Colchero M.A., Lopez-Gatell H., Alpuche-Aranda C., Hernandez M., Miller M.A. 2009; Severe respiratory disease concurrent with the circulation of H1N1 influenza. N Engl J Med 361:674–679 [CrossRef][PubMed]
    [Google Scholar]
  8. Cunha B.A., Pherez F.M., Schoch P. 2009; Diagnostic importance of relative lymphopenia as a marker of swine influenza (H1N1) in adults. Clin Infect Dis 49:1454–1456 [CrossRef][PubMed]
    [Google Scholar]
  9. Deobagkar-Lele M., Chacko S.K., Victor E.S., Kadthur J.C., Nandi D. 2013; Interferon-γ- and glucocorticoid-mediated pathways synergize to enhance death of CD4+ CD8+ thymocytes during Salmonella enterica serovar Typhimurium infection. Immunology 138:307–321 [CrossRef][PubMed]
    [Google Scholar]
  10. Eckmann L., Kagnoff M.F. 2001; Cytokines in host defense against Salmonella. Microbes Infect 3:1191–1200 [CrossRef][PubMed]
    [Google Scholar]
  11. Fang M., Roscoe F., Sigal L.J. 2010; Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med 207:2369–2381 [CrossRef][PubMed]
    [Google Scholar]
  12. Fayad R., Sennello J.A., Kim S.H., Pini M., Dinarello C.A., Fantuzzi G. 2005; Induction of thymocyte apoptosis by systemic administration of concanavalin A in mice: role of TNF-alpha, IFN-gamma and glucocorticoids. Eur J Immunol 35:2304–2312 [CrossRef][PubMed]
    [Google Scholar]
  13. Flynn J.L., Chan J., Triebold K.J., Dalton D.K., Stewart T.A., Bloom B.R. 1993; An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254 [CrossRef][PubMed]
    [Google Scholar]
  14. Gazit R., Gruda R., Elboim M., Arnon T.I., Katz G., Achdout H., Hanna J., Qimron U., Landau G., other authors. 2006; Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 7:517–523 [CrossRef][PubMed]
    [Google Scholar]
  15. Ge M.Q., Ho A.W., Tang Y., Wong K.H., Chua B.Y., Gasser S., Kemeny D.M. 2012; NK cells regulate CD8+T-cell priming and dendritic cell migration during influenza A infection by IFN-γ and perforin-dependent mechanisms. J Immunol 189:2099–2109 [CrossRef][PubMed]
    [Google Scholar]
  16. Itoh Y., Shinya K., Kiso M., Watanabe T., Sakoda Y., Hatta M., Muramoto Y., Tamura D., Sakai-Tagawa Y., other authors. 2009; In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460:1021–1025[PubMed]
    [Google Scholar]
  17. Julkunen I., Sareneva T., Pirhonen J., Ronni T., Melén K., Matikainen S. 2001; Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev 12:171–180 [CrossRef][PubMed]
    [Google Scholar]
  18. Kreijtz J.H.C.M., Fouchier R.A.M., Rimmelzwaan G.F. 2011; Immune responses to influenza virus infection. Virus Res 162:19–30 [CrossRef][PubMed]
    [Google Scholar]
  19. Lang P.A., Lang K.S., Xu H.C., Grusdat M., Parish I.A., Recher M., Elford A.R., Dhanji S., Shaabani N., other authors. 2012; Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+T-cell immunity. Proc Natl Acad Sci U S A 109:1210–1215 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee S.H., Miyagi T., Biron C.A. 2007; Keeping NK cells in highly regulated antiviral warfare. Trends Immunol 28:252–259 [CrossRef][PubMed]
    [Google Scholar]
  21. Liu B., Zhang X., Deng W., Liu J., Li H., Wen M., Bao L., Qu J., Liu Y., other authors. 2014; Severe influenza A(H1N1)pdm09 infection induces thymic atrophy through activating innate CD8+CD44hi T-cells by upregulating IFN-γ. Cell Death Dis 5:e1440 [CrossRef][PubMed]
    [Google Scholar]
  22. Lünemann A., Lünemann J.D., Münz C. 2009; Regulatory NK-cell functions in inflammation and autoimmunity. Mol Med 15:352–358 [CrossRef][PubMed]
    [Google Scholar]
  23. Maines T.R., Szretter K.J., Perrone L., Belser J.A., Bright R.A., Zeng H., Tumpey T.M., Katz J.M. 2008; Pathogenesis of emerging avian influenza viruses in mammals and the host innate immune response. Immunol Rev 225:68–84 [CrossRef][PubMed]
    [Google Scholar]
  24. Martín-Fontecha A., Thomsen L.L., Brett S., Gerard C., Lipp M., Lanzavecchia A., Sallusto F. 2004; Induced recruitment of NK cells to lymph nodes provides IFN-gamma for TH1 priming. Nat Immunol 5:1260–1265 [CrossRef][PubMed]
    [Google Scholar]
  25. Nogusa S., Ritz B.W., Kassim S.H., Jennings S.R., Gardner E.M. 2008; Characterization of age-related changes in natural killer cells during primary influenza infection in mice. Mech Ageing Dev 129:223–230 [CrossRef][PubMed]
    [Google Scholar]
  26. Papadopoulou A.S., Dooley J., Linterman M.A., Pierson W., Ucar O., Kyewski B., Zuklys S., Hollander G.A., Matthys P., other authors. 2012; The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nat Immunol 13:181–187 [CrossRef][PubMed]
    [Google Scholar]
  27. Paust S., Senman B., von Andrian U.H. 2010; Adaptive immune responses mediated by natural killer cells. Immunol Rev 235:286–296[PubMed] [CrossRef]
    [Google Scholar]
  28. Savino W. 2006; The thymus is a common target organ in infectious diseases. PLoS Pathog 2:e62 [CrossRef][PubMed]
    [Google Scholar]
  29. Schoenborn J.R., Wilson C.B. 2007; Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101 [CrossRef][PubMed]
    [Google Scholar]
  30. Smeltz R.B., Wolf N.A., Swanborg R.H. 1999; Inhibition of autoimmune T cell responses in the DA rat by bone marrow-derived NK cells in vitro: implications for autoimmunity. J Immunol 163:1390–1397[PubMed]
    [Google Scholar]
  31. Soderquest K., Walzer T., Zafirova B., Klavinskis L.S., Polić B., Vivier E., Lord G.M., Martín-Fontecha A. 2011; Cutting edge: CD8+T cell priming in the absence of NK cells leads to enhanced memory responses. J Immunol 186:3304–3308 [CrossRef][PubMed]
    [Google Scholar]
  32. Sridhar S., Begom S., Bermingham A., Hoschler K., Adamson W., Carman W., Bean T., Barclay W., Deeks J.J., Lalvani A. 2013; Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 19:1305–1312 [CrossRef][PubMed]
    [Google Scholar]
  33. Stein-Streilein J., Guffee J. 1986; In vivo treatment of mice and hamsters with antibodies to asialo GM1 increases morbidity and mortality to pulmonary influenza infection. J Immunol 136:1435–1441[PubMed]
    [Google Scholar]
  34. Stöhr K. 2002; Influenza – WHO cares. Lancet Infect Dis 2:517 [CrossRef][PubMed]
    [Google Scholar]
  35. Su H.C., Nguyen K.B., Salazar-Mather T.P., Ruzek M.C., Dalod M.Y., Biron C.A. 2001; NK cell functions restrain T cell responses during viral infections. Eur J Immunol 31:3048–3055 [CrossRef][PubMed]
    [Google Scholar]
  36. Sun J.C., Lanier L.L. 2009; Natural killer cells remember: an evolutionary bridge between innate and adaptive immunity?. Eur J Immunol 39:2059–2064 [CrossRef][PubMed]
    [Google Scholar]
  37. Thompson B.T. 2003; Glucocorticoids and acute lung injury. Crit Care Med 31:(Suppl)S253–S257 [CrossRef][PubMed]
    [Google Scholar]
  38. Tian J., Qi W., Li X., He J., Jiao P., Zhang C., Liu G.Q., Liao M. 2012; A single E627K mutation in the PB2 protein of H9N2 avian influenza virus increases virulence by inducing higher glucocorticoids (GCs) level. PLoS One 7:e38233 [CrossRef][PubMed]
    [Google Scholar]
  39. Tran T.H., Nguyen T.L., Nguyen T.D., Luong T.S., Pham P.M., Nguyen V., Pham T.S., Vo C.D., Le T.Q., other authors. 2004; Avian influenza A (H5N1) in 10 patients in Vietnam. N Engl J Med 350:1179–1188 [CrossRef][PubMed]
    [Google Scholar]
  40. van de Sandt C.E., Kreijtz J.H., Rimmelzwaan G.F. 2012; Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 4:1438–1476 [CrossRef][PubMed]
    [Google Scholar]
  41. Vivier E., Tomasello E., Baratin M., Walzer T., Ugolini S. 2008; Functions of natural killer cells. Nat Immunol 9:503–510 [CrossRef][PubMed]
    [Google Scholar]
  42. Vivier E., Raulet D.H., Moretta A., Caligiuri M.A., Zitvogel L., Lanier L.L., Yokoyama W.M., Ugolini S. 2011; Innate or adaptive immunity? The example of natural killer cells. Science 331:44–49 [CrossRef][PubMed]
    [Google Scholar]
  43. Vogel A.B., Haasbach E., Reiling S.J., Droebner K., Klingel K., Planz O. 2010; Highly pathogenic influenza virus infection of the thymus interferes with T lymphocyte development. J Immunol 185:4824–4834 [CrossRef][PubMed]
    [Google Scholar]
  44. Waggoner S.N., Cornberg M., Selin L.K., Welsh R.M. 2012; Natural killer cells act as rheostats modulating antiviral T cells. Nature 481:394–398[PubMed]
    [Google Scholar]
  45. Yarovinsky F. 2014; Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 14:109–121 [CrossRef][PubMed]
    [Google Scholar]
  46. Zhang B., Yamamura T., Kondo T., Fujiwara M., Tabira T. 1997; Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186:1677–1687 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhou G., Juang S.W., Kane K.P. 2013; NK cells exacerbate the pathology of influenza virus infection in mice. Eur J Immunol 43:929–938 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000276
Loading
/content/journal/jgv/10.1099/jgv.0.000276
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error