1887

Abstract

Alcelaphine herpesvirus 1 (AlHV-1) is a γ-herpesvirus (γ-HV) carried asymptomatically by wildebeest. Upon cross-species transmission, AlHV-1 induces a fatal lymphoproliferative disease named malignant catarrhal fever (MCF) in many ruminants, including cattle, and the rabbit model. Latency has been shown to be essential for MCF induction. However, the mechanisms causing the activation and proliferation of infected CD8T cells are unknown. Many γ-HVs express microRNAs (miRNAs). These small non-coding RNAs can regulate expression of host or viral target genes involved in various pathways and are thought to facilitate viral infection and/or mediate activation and proliferation of infected lymphocytes. The AlHV-1 genome has been predicted to encode a large number of miRNAs. However, their precise contribution in viral infection and pathogenesis remains unknown. Here, using cloning and sequencing of small RNAs we identified 36 potential miRNAs expressed in a lymphoblastoid cell line propagated from a calf infected with AlHV-1 and developing MCF. Among the sequenced candidate miRNAs, 32 were expressed on the reverse strand of the genome in two main clusters. The expression of these 32 viral miRNAs was further validated using Northern blot and quantitative reverse transcription PCR in lymphoid organs of MCF-developing calves or rabbits. To determine the concerted contribution in MCF of 28 viral miRNAs clustered in the non-protein-coding region of the AlHV-1 genome, a recombinant virus was produced. The absence of these 28 miRNAs did not affect viral growth or MCF induction in rabbits, indicating that the AlHV-1 miRNAs clustered in this non-protein-coding genomic region are dispensable for MCF induction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000272
2015-11-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/11/3360.html?itemId=/content/journal/jgv/10.1099/jgv.0.000272&mimeType=html&fmt=ahah

References

  1. Balcells I. , Cirera S. , Busk P.K. . ( 2011;). Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers. BMC Biotechnol 11: 70 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bartel D.P. . ( 2009;). MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barton E. , Mandal P. , Speck S.H. . ( 2011;). Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 29: 351–397 [CrossRef] [PubMed].
    [Google Scholar]
  4. Busk P.K. . ( 2014;). A tool for design of primers for microRNA-specific quantitative RT-qPCR. BMC Bioinformatics 15: 29 [CrossRef] [PubMed].
    [Google Scholar]
  5. Buxton D. , Reid H.W. . ( 1980;). Transmission of malignant catarrhal fever to rabbits. Vet Rec 106: 243–245 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chen Y. , Liersch R. , Detmar M. . ( 2012;). The miR-290-295 cluster suppresses autophagic cell death of melanoma cells. Sci Rep 2: 808 [CrossRef] [PubMed].
    [Google Scholar]
  7. Croce C.M. . ( 2009;). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10: 704–714 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dewals B.G. , Vanderplasschen A. . ( 2011;). Malignant catarrhal fever induced by Alcelaphine herpesvirus 1 is characterized by an expansion of activated CD3+CD8+CD4− T cells expressing a cytotoxic phenotype in both lymphoid and non-lymphoid tissues. Vet Res 42: 95 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dewals B. , Boudry C. , Gillet L. , Markine-Goriaynoff N. , de Leval L. , Haig D.M. , Vanderplasschen A. . ( 2006;). Cloning of the genome of Alcelaphine herpesvirus 1 as an infectious and pathogenic bacterial artificial chromosome. J Gen Virol 87: 509–517 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dewals B. , Boudry C. , Farnir F. , Drion P.V. , Vanderplasschen A. . ( 2008;). Malignant catarrhal fever induced by alcelaphine herpesvirus 1 is associated with proliferation of CD8+T cells supporting a latent infection. PLoS One 3: e1627 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dewals B. , Myster F. , Palmeira L. , Gillet L. , Ackermann M. , Vanderplasschen A. . ( 2011;). Ex vivo bioluminescence detection of Alcelaphine herpesvirus 1 infection during malignant catarrhal fever. J Virol 85: 6941–6954 [CrossRef] [PubMed].
    [Google Scholar]
  12. Diebel K.W. , Oko L.M. , Medina E.M. , Niemeyer B.F. , Warren C.J. , Claypool D.J. , Tibbetts S.A. , Cool C.D. , Clambey E.T. , van Dyk L.F. . ( 2015;). Gammaherpesvirus small noncoding RNAs are bifunctional elements that regulate infection and contribute to virulence in vivo . MBio 6: e01670–e01714 [CrossRef] [PubMed].
    [Google Scholar]
  13. Dölken L. , Krmpotic A. , Kothe S. , Tuddenham L. , Tanguy M. , Marcinowski L. , Ruzsics Z. , Elefant N. , Altuvia Y. , other authors . ( 2010;). Cytomegalovirus microRNAs facilitate persistent virus infection in salivary glands. PLoS Pathog 6: e1001150 [CrossRef] [PubMed].
    [Google Scholar]
  14. Ensser A. , Fleckenstein B. . ( 2005;). T-cell transformation and oncogenesis by γ2-herpesviruses. Adv Cancer Res 93: 91–128 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ensser A. , Pflanz R. , Fleckenstein B. . ( 1997;). Primary structure of the alcelaphine herpesvirus 1 genome. J Virol 71: 6517–6525 [PubMed].
    [Google Scholar]
  16. Feederle R. , Linnstaedt S.D. , Bannert H. , Lips H. , Bencun M. , Cullen B.R. , Delecluse H.J. . ( 2011;). A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog 7: e1001294 [CrossRef] [PubMed].
    [Google Scholar]
  17. Feldman E.R. , Kara M. , Coleman C.B. , Grau K.R. , Oko L.M. , Krueger B.J. , Renne R. , van Dyk L.F. , Tibbetts S.A. . ( 2014;). Virus-encoded microRNAs facilitate gammaherpesvirus latency and pathogenesis in vivo . MBio 5: e00981–e001014 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gottwein E. , Mukherjee N. , Sachse C. , Frenzel C. , Majoros W.H. , Chi J.T. , Braich R. , Manoharan M. , Soutschek J. , other authors . ( 2007;). A viral microRNA functions as an orthologue of cellular miR-155. Nature 450: 1096–1099 [CrossRef] [PubMed].
    [Google Scholar]
  19. Grey F. . ( 2015;). Role of microRNAs in herpesvirus latency and persistence. J Gen Virol 96: 739–751 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kincaid R.P. , Sullivan C.S. . ( 2012;). Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 8: e1003018 [CrossRef] [PubMed].
    [Google Scholar]
  21. Liu P. , Jenkins N.A. , Copeland N.G. . ( 2003;). A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13: 476–484 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lüningschrör P. , Stöcker B. , Kaltschmidt B. , Kaltschmidt C. . ( 2012;). miR-290 cluster modulates pluripotency by repressing canonical NF-κB signaling. Stem Cells 30: 655–664 [CrossRef] [PubMed].
    [Google Scholar]
  23. Nightingale K. , Levy C.S. , Hopkins J. , Grey F. , Esper S. , Dalziel R.G. . ( 2014;). Expression of ovine herpesvirus-2 encoded microRNAs in an immortalised bovine - cell line. PLoS One 9: e97765 [CrossRef] [PubMed].
    [Google Scholar]
  24. Palmeira L. , Sorel O. , Van Campe W. , Boudry C. , Roels S. , Myster F. , Reschner A. , Coulie P.G. , Kerkhofs P. , other authors . ( 2013;). An essential role for γ-herpesvirus latency-associated nuclear antigen homolog in an acute lymphoproliferative disease of cattle. Proc Natl Acad Sci U S A 110: E1933–E1942 [CrossRef] [PubMed].
    [Google Scholar]
  25. Pfeffer S. , Zavolan M. , Grässer F.A. , Chien M. , Russo J.J. , Ju J. , John B. , Enright A.J. , Marks D. , other authors . ( 2004;). Identification of virus-encoded microRNAs. Science 304: 734–736 [CrossRef] [PubMed].
    [Google Scholar]
  26. Pfeffer S. , Sewer A. , Lagos-Quintana M. , Sheridan R. , Sander C. , Grässer F.A. , van Dyk L.F. , Ho C.K. , Shuman S. , other authors . ( 2005;). Identification of microRNAs of the herpesvirus family. Nat Methods 2: 269–276 [CrossRef] [PubMed].
    [Google Scholar]
  27. Plowright W.I. . ( 1965a;). Malignant catarrhal fever in East Africa. I. Behaviour of the virus in free-living populations of blue wildebeest (Gorgon taurinus taurinus Burchell). Res Vet Sci 6: 56–68 [PubMed].
    [Google Scholar]
  28. Plowright W. . ( 1965b;). Malignant catarrhal fever in East Africa. II. Observations on wildebeest calves at the laboratory and contact transmission of the infection to cattle. Res Vet Sci 6: 69–83 [PubMed].
    [Google Scholar]
  29. Plowright W. . ( 1990;). Malignant catarrhal fever virus. . In Virus Infections of Ruminants, pp. 123–150. Edited by Dinter Z. , Morein B. . Amsterdam: Elsevier;.[CrossRef]
    [Google Scholar]
  30. Plowright W. , Ferris R.D. , Scott G.R. . ( 1960;). Blue wildebeest and the aetiological agent of bovine malignant catarrhal fever. Nature 188: 1167–1169 [CrossRef] [PubMed].
    [Google Scholar]
  31. Plowright W. , Herniman K.A. , Jessett D.M. , Kalunda M. , Rampton C.S. . ( 1975;). Immunisation of cattle against the herpesvirus of malignant catarrhal fever: failure of inactivated culture vaccines with adjuvant. Res Vet Sci 19: 159–166 [PubMed].
    [Google Scholar]
  32. Riaz A. , Dry I. , Levy C.S. , Hopkins J. , Grey F. , Shaw D.J. , Dalziel R.G. . ( 2014;). Ovine herpesvirus-2-encoded microRNAs target virus genes involved in virus latency. J Gen Virol 95: 472–480 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rosewick N. , Momont M. , Durkin K. , Takeda H. , Caiment F. , Cleuter Y. , Vernin C. , Mortreux F. , Wattel E. , other authors . ( 2013;). Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc Natl Acad Sci U S A 110: 2306–2311 [CrossRef] [PubMed].
    [Google Scholar]
  34. Russell G.C. , Stewart J.P. , Haig D.M. . ( 2009;). Malignant catarrhal fever: a review. Vet J 179: 324–335 [CrossRef] [PubMed].
    [Google Scholar]
  35. Seto E. , Moosmann A. , Grömminger S. , Walz N. , Grundhoff A. , Hammerschmidt W. . ( 2010;). Micro RNAs of Epstein-Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells. PLoS Pathog 6: e1001063 [CrossRef] [PubMed].
    [Google Scholar]
  36. Stik G. , Laurent S. , Coupeau D. , Coutaud B. , Dambrine G. , Rasschaert D. , Muylkens B. . ( 2010;). A p53-dependent promoter associated with polymorphic tandem repeats controls the expression of a viral transcript encoding clustered microRNAs. RNA 16: 2263–2276 [CrossRef] [PubMed].
    [Google Scholar]
  37. Suffert G. , Malterer G. , Hausser J. , Viiliäinen J. , Fender A. , Contrant M. , Ivacevic T. , Benes V. , Gros F. , other authors . ( 2011;). Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis. PLoS Pathog 7: e1002405 [CrossRef] [PubMed].
    [Google Scholar]
  38. Swa S. , Wright H. , Thomson J. , Reid H. , Haig D. . ( 2001;). Constitutive activation of Lck and Fyn tyrosine kinases in large granular lymphocytes infected with the γ-herpesvirus agents of malignant catarrhal fever. Immunology 102: 44–52 [CrossRef] [PubMed].
    [Google Scholar]
  39. Tuddenham L. , Jung J.S. , Chane-Woon-Ming B. , Dölken L. , Pfeffer S. . ( 2012;). Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J Virol 86: 1638–1649 [CrossRef] [PubMed].
    [Google Scholar]
  40. Ventura A. , Jacks T. . ( 2009;). MicroRNAs and cancer: short RNAs go a long way. Cell 136: 586–591 [CrossRef] [PubMed].
    [Google Scholar]
  41. Walz A. , Feinstein P. , Khan M. , Mombaerts P. . ( 2007;). Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134: 4063–4072 [CrossRef] [PubMed].
    [Google Scholar]
  42. Walz N. , Christalla T. , Tessmer U. , Grundhoff A. . ( 2010;). A global analysis of evolutionary conservation among known and predicted gammaherpesvirus microRNAs. J Virol 84: 716–728 [CrossRef] [PubMed].
    [Google Scholar]
  43. Warming S. , Costantino N. , Court D.L. , Jenkins N.A. , Copeland N.G. . ( 2005;). Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33: e36 [CrossRef] [PubMed].
    [Google Scholar]
  44. Zhao Y. , Yao Y. , Xu H. , Lambeth L. , Smith L.P. , Kgosana L. , Wang X. , Nair V. . ( 2009;). A functional microRNA-155 ortholog encoded by the oncogenic Marek's disease virus. J Virol 83: 489–492 [CrossRef] [PubMed].
    [Google Scholar]
  45. Zhao Y. , Xu H. , Yao Y. , Smith L.P. , Kgosana L. , Green J. , Petherbridge L. , Baigent S.J. , Nair V. . ( 2011;). Critical role of the virus-encoded microRNA-155 ortholog in the induction of Marek's disease lymphomas. PLoS Pathog 7: e1001305 [CrossRef] [PubMed].
    [Google Scholar]
  46. Zhu Y. , Haecker I. , Yang Y. , Gao S.J. , Renne R. . ( 2013;). γ-Herpesvirus-encoded miRNAs and their roles in viral biology and pathogenesis. Curr Opin Virol 3: 266–275 [CrossRef] [PubMed].
    [Google Scholar]
  47. Zuker M. . ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406–3415 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000272
Loading
/content/journal/jgv/10.1099/jgv.0.000272
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error