1887

Abstract

Singapore grouper iridovirus (SGIV) is a major viral pathogen of grouper aquaculture, and has caused heavy economic losses in China and South-east Asia. In this study, we generated four ssDNA aptamers against SGIV-infected grouper spleen (GS) cells using SELEX (systematic evolution of ligands by exponential enrichment) technology. Four aptamers exhibited high affinity to SGIV-infected GS cells, in particular the Q2 aptamer. Q2 had a binding affinity of 12.09 nM, the highest of the four aptamers. These aptamers also recognized SGIV-infected tissues with high levels of specificity. Protease treatment and flow cytometry analysis of SGIV-infected cells revealed that the target molecules of the Q3, Q4 and Q5 aptamers were trypsin-sensitive proteins, whilst the target molecules of Q2 might be membrane lipids or surface proteins that were not trypsin-sensitive. The generated aptamers appeared to inhibit SGIV infection . Aptamer Q2 conferred the highest levels of protection against SGIV and was able to inhibit SGIV infection in a dose-dependent manner. In addition, Q2 was efficiently internalized by SGIV-infected GS cells and localized at the viral assembly sites. Our results demonstrated that the four novel aptamers we generated were specific for SGIV-infected cells and could potentially be applied as rapid molecular diagnostic test reagents or therapeutic drugs targeting SGIV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000270
2015-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/11/3348.html?itemId=/content/journal/jgv/10.1099/jgv.0.000270&mimeType=html&fmt=ahah

References

  1. Abós B., Castro R., González Granja A., Havixbeck J.J., Barreda D.R., Tafalla C. 2015; Early activation of teleost B cells in response to rhabdovirus infection. J Virol 89:1768–1780 [View Article][PubMed]
    [Google Scholar]
  2. Balogh Z., Lautner G., Bardóczy V., Komorowska B., Gyurcsányi R.E., Mészáros T. 2010; Selection and versatile application of virus-specific aptamers. FASEB J 24:4187–4195 [View Article][PubMed]
    [Google Scholar]
  3. Bunka D.H.J., Stockley P.G. 2006; Aptamers come of age – at last. Nat Rev Microbiol 4:588–596 [View Article][PubMed]
    [Google Scholar]
  4. Bunka D.H.J., Platonova O., Stockley P.G. 2010; Development of aptamer therapeutics. Curr Opin Pharmacol 10:557–562 [View Article][PubMed]
    [Google Scholar]
  5. Chou S.H., Chin K.H., Wang A.H. 2005; DNA aptamers as potential anti-HIV agents. Trends Biochem Sci 30:231–234 [View Article][PubMed]
    [Google Scholar]
  6. Chu T.C., Twu K.Y., Ellington A.D., Levy M. 2006; Aptamer mediated siRNA delivery. Nucleic Acids Res 34:e73 [View Article][PubMed]
    [Google Scholar]
  7. Ellington A.D., Szostak J.W. 1990; In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822 [View Article][PubMed]
    [Google Scholar]
  8. Gerold G., Pietschmann T. 2014; The HCV life cycle: in vitro tissue culture systems and therapeutic targets. Dig Dis 32:525–537 [View Article][PubMed]
    [Google Scholar]
  9. Huang X.H., Huang Y.H., Ouyang Z.L., Qin Q.W. 2011a; Establishment of a cell line from the brain of grouper (Epinephelus akaara) for cytotoxicity testing and virus pathogenesis. Aquaculture 311:65–73 [View Article]
    [Google Scholar]
  10. Huang X., Huang Y., Ouyang Z., Xu L., Yan Y., Cui H., Han X., Qin Q. 2011b; Singapore grouper iridovirus, a large DNA virus, induces nonapoptotic cell death by a cell type dependent fashion and evokes ERK signaling. Apoptosis 16:831–845 [View Article][PubMed]
    [Google Scholar]
  11. Hwang S.D., Midorikawa N., Punnarak P., Kikuchi Y., Kondo H., Hirono I., Aoki T. 2012; Inhibition of Hirame rhabdovirus growth by RNA aptamers. J Fish Dis 35:927–934 [View Article][PubMed]
    [Google Scholar]
  12. Karst S.M., Zhu S., Goodfellow I.G. 2015; The molecular pathology of noroviruses. J Pathol 235:206–216 [View Article][PubMed]
    [Google Scholar]
  13. Li P., Yan Y., Wei S., Wei J., Gao R., Huang X., Huang Y., Jiang G., Qin Q. 2014; Isolation and characterization of a new class of DNA aptamers specific binding to Singapore grouper iridovirus (SGIV) with antiviral activities. Virus Res 188:146–154 [View Article][PubMed]
    [Google Scholar]
  14. Liang Y., Zhang Z., Wei H., Hu Q., Deng J., Guo D., Cui Z., Zhang X.E. 2011; Aptamer beacons for visualization of endogenous protein HIV-1 reverse transcriptase in living cells. Biosens Bioelectron 28:270–276 [View Article][PubMed]
    [Google Scholar]
  15. Liang H.R., Hu G.Q., Zhang T., Yang Y.J., Zhao L.L., Qi Y.L., Wang H.L., Gao Y.W., Yang S.T., Xia X.Z. 2012; Isolation of ssDNA aptamers that inhibit rabies virus. Int Immunopharmacol 14:341–347 [View Article][PubMed]
    [Google Scholar]
  16. Liang H.R., Liu Q., Zheng X.X., Gai W.W., Xue X.H., Hu G.Q., Wu H.X., Wang H.L., Yang S.T., Xia X.Z. 2013; Aptamers targeting rabies virus-infected cells inhibit viral replication both in vitro and in vivo. Virus Res 173:398–403 [View Article][PubMed]
    [Google Scholar]
  17. Marino G., Azzurro E., Massari A., Finoia M.G., Mandich A. 2001; Reproduction in the dusky grouper from the southern Mediterranean. J Fish Biol 58:909–927 [View Article]
    [Google Scholar]
  18. Punnarak P., Santos M.D., Hwang S.D., Kondo H., Hirono I., Kikuchi Y., Aoki T. 2012; RNA aptamers inhibit the growth of the fish pathogen viral hemorrhagic septicemia virus (VHSV). Mar Biotechnol (NY) 14:752–761 [View Article][PubMed]
    [Google Scholar]
  19. Qin Q.W., Lam T.J., Sin Y.M., Shen H., Chang S.F., Ngoh G.H., Chen C.L. 2001; Electron microscopic observations of a marine fish iridovirus isolated from brown-spotted grouper, Epinephelus tauvina. J Virol Methods 98:17–24 [View Article][PubMed]
    [Google Scholar]
  20. Qin Q.W., Chang S.F., Ngoh-Lim G.H., Gibson-Kueh S., Shi C., Lam T.J. 2003; Characterization of a novel ranavirus isolated from grouper Epinephelus tauvina. Dis Aquat Organ 53:1–9 [View Article][PubMed]
    [Google Scholar]
  21. Qin Q.W., Wu T.H., Jia T.L., Hegde A., Zhang R.Q. 2006; Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. J Virol Methods 131:58–64 [View Article][PubMed]
    [Google Scholar]
  22. Reed L.J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Epidemiol 27:493–497
    [Google Scholar]
  23. Seeger C., Mason W.S. 2015; Molecular biology of hepatitis B virus infection. Virology 479-480:672–686 [View Article][PubMed]
    [Google Scholar]
  24. Shangguan D., Li Y., Tang Z., Cao Z.C., Chen H.W., Mallikaratchy P., Sefah K., Yang C.J., Tan W. 2006; Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A 103:11838–11843 [View Article][PubMed]
    [Google Scholar]
  25. Shangguan D., Cao Z., Meng L., Mallikaratchy P., Sefah K., Wang H., Li Y., Tan W. 2008a; Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7:2133–2139 [View Article][PubMed]
    [Google Scholar]
  26. Shangguan D., Meng L., Cao Z.C., Xiao Z., Fang X., Li Y., Cardona D., Witek R.P., Liu C., Tan W. 2008b; Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80:721–728 [View Article][PubMed]
    [Google Scholar]
  27. Simaeys D.V., Turek D., Champanhac C., Vaizer J., Sefah K., Zheng J., Sutphen R., Tan W.H. 2014; Identification of cell membrane protein stress-induced phosphoprotein 1 as a potential ovarian cancer biomarker using aptamers selected by cell systematic evolution of ligands by exponential enrichment. Anal Chem 86:4521–4527 [View Article][PubMed]
    [Google Scholar]
  28. Syed M.A., Pervaiz S. 2010; Advances in aptamers. Oligonucleotides 20:215–224 [View Article][PubMed]
    [Google Scholar]
  29. Tang Z., Parekh P., Turner P., Moyer R.W., Tan W. 2009; Generating aptamers for recognition of virus-infected cells. Clin Chem 55:813–822 [View Article][PubMed]
    [Google Scholar]
  30. Verdaguer N., Ferrero D., Murthy M.R. 2014; Viruses and viral proteins. IUCrJ 1:492–504 [View Article][PubMed]
    [Google Scholar]
  31. Wang S., Huang X., Huang Y., Hao X., Xu H., Cai M., Wang H., Qin Q. 2014; Entry of a novel marine DNA virus, Singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner. J Virol 88:13047–13063 [View Article][PubMed]
    [Google Scholar]
  32. Xiao Z., Farokhzad O.C. 2012; Aptamer-functionalized nanoparticles for medical applications: challenges and opportunities. ACS Nano 6:3670–3676 [View Article][PubMed]
    [Google Scholar]
  33. Xiao Z., Shangguan D., Cao Z., Fang X., Tan W. 2008; Cell-specific internalization study of an aptamer from whole cell selection. Chemistry 14:1769–1775 [View Article][PubMed]
    [Google Scholar]
  34. Yang M., Jiang G., Li W., Qiu K., Zhang M., Carter C.M., Al-Quran S.Z., Li Y. 2014; Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol 7:5 [View Article][PubMed]
    [Google Scholar]
  35. Zhang K., Sefah K., Tang L., Zhao Z., Zhu G., Ye M., Sun W., Goodison S., Tan W. 2012; A novel aptamer developed for breast cancer cell internalization. ChemMedChem 7:79–84 [View Article][PubMed]
    [Google Scholar]
  36. Zhou J., Rossi J.J. 2011; Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides 21:1–10 [View Article][PubMed]
    [Google Scholar]
  37. Zhou J., Rossi J.J. 2012; Therapeutic potential of aptamer-siRNA conjugates for treatment of HIV-1. BioDrugs 26:393–400[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000270
Loading
/content/journal/jgv/10.1099/jgv.0.000270
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error