1887

Abstract

The hantavirus membrane fusion process is mediated by the Gc envelope glycoprotein from within endosomes. However, little is known about the specific mechanism that triggers Gc fusion activation, and its pre- and post-fusion conformations. We established cell-free systems to characterize hantavirus fusion activation. Low pH was sufficient to trigger the interaction of virus-like particles with liposomes. This interaction was dependent on a pre-fusion glycoprotein arrangement. Further, low pH induced Gc multimerization changes leading to non-reversible Gc homotrimers. These trimers were resistant to detergent, heat and protease digestion, suggesting characteristics of a stable post-fusion structure. No acid-dependent oligomerization rearrangement was detected for the trypsin-sensitive Gn envelope glycoprotein. Finally, acidification induced fusion of glycoprotein-expressing effector cells with non-susceptible CHO cells. Together, the data provide novel information on the Gc fusion trigger and its non-reversible activation involving lipid interaction, multimerization changes and membrane fusion which ultimately allow hantavirus entry into cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000269
2015-11-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/11/3192.html?itemId=/content/journal/jgv/10.1099/jgv.0.000269&mimeType=html&fmt=ahah

References

  1. Acuña R., Cifuentes-Muñoz N., Márquez C.L., Bulling M., Klingström J., Mancini R., Lozach P.Y., Tischler N.D.. ( 2014;). Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles. J Virol 88: 2344–2348 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baquero E., Albertini A.A., Vachette P., Lepault J., Bressanelli S., Gaudin Y.. ( 2013;). Intermediate conformations during viral fusion glycoprotein structural transition. Curr Opin Virol 3: 143–150 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barriga G.P., Martínez-Valdebenito C., Galeno H., Ferrés M., Lozach P.Y., Tischler N.D.. ( 2013;). A rapid method for infectivity titration of Andes hantavirus using flow cytometry. J Virol Methods 193: 291–294 [CrossRef] [PubMed].
    [Google Scholar]
  4. Battisti A.J., Chu Y.K., Chipman P.R., Kaufmann B., Jonsson C.B., Rossmann M.G.. ( 2011;). Structural studies of Hantaan virus. J Virol 85: 835–841 [CrossRef] [PubMed].
    [Google Scholar]
  5. Choi Y., Kwon Y.C., Kim S.I., Park J.M., Lee K.H., Ahn B.Y.. ( 2008;). A hantavirus causing hemorrhagic fever with renal syndrome requires gC1qR/p32 for efficient cell binding and infection. Virology 381: 178–183 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cifuentes-Muñoz N., Darlix J.L., Tischler N.D.. ( 2010;). Development of a lentiviral vector system to study the role of the Andes virus glycoproteins. Virus Res 153: 29–35 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cifuentes-Muñoz N., Barriga G.P., Valenzuela P.D.T., Tischler N.D.. ( 2011;). Aromatic and polar residues spanning the candidate fusion peptide of the Andes virus Gc protein are essential for membrane fusion and infection. J Gen Virol 92: 552–563 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cifuentes-Muñoz N., Salazar-Quiroz N., Tischler N.D.. ( 2014;). Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Viruses 6: 1801–1822 [CrossRef] [PubMed].
    [Google Scholar]
  9. Crowe W.E., Altamirano J., Huerto L., Alvarez-Leefmans F.J.. ( 1995;). Volume changes in single N1E-115 neuroblastoma cells measured with a fluorescent probe. Neuroscience 69: 283–296 [CrossRef] [PubMed].
    [Google Scholar]
  10. de Boer S.M., Kortekaas J., Spel L., Rottier P.J., Moormann R.J., Bosch B.J.. ( 2012;). Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein. J Virol 86: 13642–13652 [CrossRef] [PubMed].
    [Google Scholar]
  11. Epand R.M.. ( 2003;). Fusion peptides and the mechanism of viral fusion. Biochim Biophys Acta 1614: 116–121 [CrossRef] [PubMed].
    [Google Scholar]
  12. Fritz R., Stiasny K., Heinz F.X.. ( 2008;). Identification of specific histidines as pH sensors in flavivirus membrane fusion. J Cell Biol 183: 353–361 [CrossRef] [PubMed].
    [Google Scholar]
  13. Galeno H., Mora J., Villagra E., Fernandez J., Hernandez J., Mertz G.J., Ramirez E.. ( 2002;). First human isolate of Hantavirus (Andes virus) in the Americas. Emerg Infect Dis 8: 657–661 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gavrilovskaya I.N., Shepley M., Shaw R., Ginsberg M.H., Mackow E.R.. ( 1998;). Beta3 Integrins mediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci U S A 95: 7074–7079 [CrossRef] [PubMed].
    [Google Scholar]
  15. Gibbons D.L., Kielian M.. ( 2002;). Molecular dissection of the Semliki Forest virus homotrimer reveals two functionally distinct regions of the fusion protein. J Virol 76: 1194–1205 [CrossRef] [PubMed].
    [Google Scholar]
  16. Gibbons D.L., Ahn A., Chatterjee P.K., Kielian M.. ( 2000;). Formation and characterization of the trimeric form of the fusion protein of Semliki Forest Virus. J Virol 74: 7772–7780 [CrossRef] [PubMed].
    [Google Scholar]
  17. Harrison S.C.. ( 2015;). Viral membrane fusion. Virology 479-480: 498–507 [CrossRef] [PubMed].
    [Google Scholar]
  18. Harter C., James P., Bächi T., Semenza G., Brunner J.. ( 1989;). Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the “fusion peptide”. J Biol Chem 264: 6459–6464 [PubMed].
    [Google Scholar]
  19. Hepojoki J., Strandin T., Vaheri A., Lankinen H.. ( 2010;). Interactions and oligomerization of hantavirus glycoproteins. J Virol 84: 227–242 [CrossRef] [PubMed].
    [Google Scholar]
  20. Huiskonen J.T., Hepojoki J., Laurinmäki P., Vaheri A., Lankinen H., Butcher S.J., Grünewald K.. ( 2010;). Electron cryotomography of Tula hantavirus suggests a unique assembly paradigm for enveloped viruses. J Virol 84: 4889–4897 [CrossRef] [PubMed].
    [Google Scholar]
  21. Jin M., Park J., Lee S., Park B., Shin J., Song K.J., Ahn T.I., Hwang S.Y., Ahn B.Y., Ahn K.. ( 2002;). Hantaan virus enters cells by clathrin-dependent receptor-mediated endocytosis. Virology 294: 60–69 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kendall D.A., MacDonald R.C.. ( 1982;). A fluorescence assay to monitor vesicle fusion and lysis. J Biol Chem 257: 13892–13895 [PubMed].
    [Google Scholar]
  23. Kielian M.. ( 2014;). Mechanisms of virus membrane fusion proteins. Annu Rev Virol 1: 171–189 [CrossRef].
    [Google Scholar]
  24. Kielian M., Rey F.A.. ( 2006;). Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4: 67–76 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kielian M., Chanel-Vos C., Liao M.. ( 2010;). Alphavirus entry and membrane fusion. Viruses 2: 796–825 [CrossRef] [PubMed].
    [Google Scholar]
  26. Löber C., Anheier B., Lindow S., Klenk H.D., Feldmann H.. ( 2001;). The Hantaan virus glycoprotein precursor is cleaved at the conserved pentapeptide WAASA. Virology 289: 224–229 [CrossRef] [PubMed].
    [Google Scholar]
  27. McCormick J.B., Palmer E.L., Sasso D.R., Kiley M.P.. ( 1982;). Morphological identification of the agent of Korean haemorrhagic fever (Hantaan virus) as a member of the Bunyaviridae. Lancet 319: 765–768 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ogino M., Yoshimatsu K., Ebihara H., Araki K., Lee B.H., Okumura M., Arikawa J.. ( 2004;). Cell fusion activities of Hantaan virus envelope glycoproteins. J Virol 78: 10776–10782 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ramanathan H.N., Jonsson C.B.. ( 2008;). New and Old World hantaviruses differentially utilize host cytoskeletal components during their life cycles. Virology 374: 138–150 [CrossRef] [PubMed].
    [Google Scholar]
  30. Schmaljohn C.S., Hasty S.E., Harrison S.A., Dalrymple J.M.. ( 1983;). Characterization of Hantaan virions, the prototype virus of hemorrhagic fever with renal syndrome. J Infect Dis 148: 1005–1012 [CrossRef] [PubMed].
    [Google Scholar]
  31. Schneider C.A., Rasband W.S., Eliceiri K.W.. ( 2012;). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675 [CrossRef] [PubMed].
    [Google Scholar]
  32. Skehel J.J., Wiley D.C.. ( 1998;). Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95: 871–874 [CrossRef] [PubMed].
    [Google Scholar]
  33. Strandin T., Hepojoki J., Wang H., Vaheri A., Lankinen H.. ( 2011;). Inactivation of hantaviruses by N-ethylmaleimide preserves virion integrity. J Gen Virol 92: 1189–1198 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tischler N.D., Gonzalez A., Perez-Acle T., Rosemblatt M., Valenzuela P.D.. ( 2005;). Hantavirus Gc glycoprotein: evidence for a class II fusion protein. J Gen Virol 86: 2937–2947 [CrossRef] [PubMed].
    [Google Scholar]
  35. White J.D., Shirey F.G., French G.R., Huggins J.W., Brand O.M., Lee H.W.. ( 1982;). Hantaan virus, aetiological agent of Korean haemorrhagic fever, has Bunyaviridae-like morphology. Lancet 319: 768–771 [CrossRef] [PubMed].
    [Google Scholar]
  36. White J.M., Delos S.E., Brecher M., Schornberg K.. ( 2008;). Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43: 189–219 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000269
Loading
/content/journal/jgv/10.1099/jgv.0.000269
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error