1887

Abstract

Immunomodulatory cellular subsets, including myeloid-derived suppressor cells (MDSCs) and T regulatory cells (Tregs), contribute to the immunosuppressive tumour microenvironment and are targets of immunotherapy, but their role in retroviral-associated immunosuppression is less well understood. Due to known crosstalk between Tregs and MDSCs in the tumour microenvironment, and also their hypothesized involvement during human immunodeficiency virus/simian immunodeficiency virus infection, studying the interplay between these immune cells during LP-BM5 retrovirus-induced murine AIDS is of interest. IL-10-producing FoxP3 Tregs expanded after LP-BM5 infection. Following adoptive transfer of natural Treg (nTreg)-depleted CD4T-cells, and subsequent LP-BM5 retroviral infection, enriched monocytic MDSCs (M-MDSCs) from these nTreg-depleted mice displayed altered phenotypic subsets. In addition, M-MDSCs from LP-BM5-infected nTreg-depleted mice exhibited increased suppression of T-cell, but not B-cell, responses, compared with M-MDSCs derived from non-depleted LP-BM5-infected controls. Additionally, LP-BM5-induced M-MDSCs modulated the production of IL-10 by FoxP3 Tregs . These collective data highlight and for the first time, to the best of our knowledge, reciprocal modulation between retroviral-induced M-MDSCs and Tregs, and may provide insight into the immunotherapeutic targeting of such regulatory cells during retroviral infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000260
2016-02-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/2/509.html?itemId=/content/journal/jgv/10.1099/jgv.0.000260&mimeType=html&fmt=ahah

References

  1. Allers K. , Loddenkemper C. , Hofmann J. , Unbehaun A. , Kunkel D. , Moos V. , Kaup F.-J. , Stahl-Hennig C. , Sauermann U. , other authors . ( 2010;). Gut mucosal FOXP3+ regulatory CD4+T cells and nonregulatory CD4+T cells are differentially affected by simian immunodeficiency virus infection in rhesus macaques. J Virol 84: 3259–3269 [CrossRef] [PubMed].
    [Google Scholar]
  2. Angin M. , Kwon D. S. , Streeck H. , Wen F. , King M. , Rezai A. , Law K. , Hongo T. C. , Pyo A. , other authors . ( 2012;). Preserved function of regulatory T cells in chronic HIV-1 infection despite decreased numbers in blood and tissue. J Infect Dis 205: 1495–1500 [CrossRef] [PubMed].
    [Google Scholar]
  3. Apoil P. A. , Puissant B. , Roubinet F. , Abbal M. , Massip P. , Blancher A. . ( 2005;). FOXP3 mRNA levels are decreased in peripheral blood CD4+ lymphocytes from HIV-positive patients. J Acquir Immune Defic Syndr 39: 381–385 [CrossRef] [PubMed].
    [Google Scholar]
  4. Baecher-Allan C. , Wolf E. , Hafler D. A. . ( 2005;). Functional analysis of highly defined, FACS-isolated populations of human regulatory CD4+ CD25+T cells. Clin Immunol 115: 10–18 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bandera A. , Ferrario G. , Saresella M. , Marventano I. , Soria A. , Zanini F. , Sabbatini F. , Airoldi M. , Marchetti G. , other authors . ( 2010;). CD4+T cell depletion, immune activation and increased production of regulatory T cells in the thymus of HIV-infected individuals. PLoS One 5: e10788 [CrossRef] [PubMed].
    [Google Scholar]
  6. Beilharz M. W. , Sammels L. M. , Paun A. , Shaw K. , van Eeden P. , Watson M. W. , Ashdown M. L. . ( 2004;). Timed ablation of regulatory CD4+T cells can prevent murine AIDS progression. J Immunol 172: 4917–4925 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bi X. , Suzuki Y. , Gatanaga H. , Oka S. . ( 2009;). High frequency and proliferation of CD4+ FOXP3+ Treg in HIV-1-infected patients with low CD4 counts. Eur J Immunol 39: 301–309 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bowers N. L. , Helton E. S. , Huijbregts R. P. H. , Goepfert P. A. , Heath S. L. , Hel Z. . ( 2014;). Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathog 10: e1003993 [CrossRef] [PubMed].
    [Google Scholar]
  9. Cerny A. , Hügin A. W. , Hardy R. R. , Hayakawa K. , Zinkernagel R. M. , Makino M. , Morse H. C. III . ( 1990;). B cells are required for induction of T cell abnormalities in a murine retrovirus-induced immunodeficiency syndrome. J Exp Med 171: 315–320 [CrossRef] [PubMed].
    [Google Scholar]
  10. Chase A. J. , Yang H.-C. , Zhang H. , Blankson J. N. , Siliciano R. F. . ( 2008;). Preservation of FoxP3+ regulatory T cells in the peripheral blood of human immunodeficiency virus type 1-infected elite suppressors correlates with low CD4+T-cell activation. J Virol 82: 8307–8315 [CrossRef] [PubMed].
    [Google Scholar]
  11. Chen S. , Akbar S. M. F. , Abe M. , Hiasa Y. , Onji M. . ( 2011;). Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol 166: 134–142 [CrossRef] [PubMed].
    [Google Scholar]
  12. Chevalier M. F. , Weiss L. . ( 2013;). The split personality of regulatory T cells in HIV infection. Blood 121: 29–37 [CrossRef] [PubMed].
    [Google Scholar]
  13. Chevalier M. F. , Didier C. , Petitjean G. , Karmochkine M. , Girard P.-M. , Barré-Sinoussi F. , Scott-Algara D. , Weiss L. . ( 2015;). Phenotype alterations in regulatory T-cell subsets in primary HIV infection and identification of Tr1-like cells as the main interleukin 10-producing CD4+T cells. J Infect Dis 211: 769–779 [CrossRef] [PubMed].
    [Google Scholar]
  14. Corzo C. A. , Condamine T. , Lu L. , Cotter M. J. , Youn J.-I. , Cheng P. , Cho H.-I. , Celis E. , Quiceno D. G. , other authors . ( 2010;). HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207: 2439–2453 [CrossRef] [PubMed].
    [Google Scholar]
  15. Daley-Bauer L. P. , Wynn G. M. , Mocarski E. S. . ( 2012;). Cytomegalovirus impairs antiviral CD8+T cell immunity by recruiting inflammatory monocytes. Immunity 37: 122–133 [CrossRef] [PubMed].
    [Google Scholar]
  16. Dannull J. , Su Z. , Rizzieri D. , Yang B. K. , Coleman D. , Yancey D. , Zhang A. , Dahm P. , Chao N. , other authors . ( 2005;). Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115: 3623–3633 [CrossRef] [PubMed].
    [Google Scholar]
  17. Delano M. J. , Scumpia P. O. , Weinstein J. S. , Coco D. , Nagaraj S. , Kelly-Scumpia K. M. , O'Malley K. A. , Wynn J. L. , Antonenko S. , other authors . ( 2007;). MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204: 1463–1474 [CrossRef] [PubMed].
    [Google Scholar]
  18. Dietze K. K. , Zelinskyy G. , Gibbert K. , Schimmer S. , Francois S. , Myers L. , Sparwasser T. , Hasenkrug K. J. , Dittmer U. . ( 2011;). Transient depletion of regulatory T cells in transgenic mice reactivates virus-specific CD8+T cells and reduces chronic retroviral set points. Proc Natl Acad Sci U S A 108: 2420–2425 [CrossRef] [PubMed].
    [Google Scholar]
  19. Dittmer U. , He H. , Messer R. J. , Schimmer S. , Olbrich A. R. M. , Ohlen C. , Greenberg P. D. , Stromnes I. M. , Iwashiro M. , other authors . ( 2004;). Functional impairment of CD8+T cells by regulatory T cells during persistent retroviral infection. Immunity 20: 293–303 [CrossRef] [PubMed].
    [Google Scholar]
  20. Duraiswamy J. , Kaluza K. M. , Freeman G. J. , Coukos G. . ( 2013;). Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 73: 3591–3603 [CrossRef] [PubMed].
    [Google Scholar]
  21. Favre D. , Lederer S. , Kanwar B. , Ma Z.-M. , Proll S. , Kasakow Z. , Mold J. , Swainson L. , Barbour J. D. , other authors . ( 2009;). Critical loss of the balance between Th17 and T regulatory cell populations in pathogenic SIV infection. PLoS Pathog 5: e1000295 [CrossRef] [PubMed].
    [Google Scholar]
  22. Fortin C. , Huang X. , Yang Y. . ( 2012;). NK cell response to vaccinia virus is regulated by myeloid-derived suppressor cells. J Immunol 189: 1843–1849 [CrossRef] [PubMed].
    [Google Scholar]
  23. Fujimura T. , Ring S. , Umansky V. , Mahnke K. , Enk A. H. . ( 2012;). Regulatory T cells stimulate B7-H1 expression in myeloid-derived suppressor cells in ret melanomas. J Invest Dermatol 132: 1239–1246 [CrossRef] [PubMed].
    [Google Scholar]
  24. Gabrilovich D. I. , Nagaraj S. . ( 2009;). Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9: 162–174 [CrossRef] [PubMed].
    [Google Scholar]
  25. Garg A. , Spector S. A. . ( 2014;). HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity. J Infect Dis 209: 441–451 [CrossRef] [PubMed].
    [Google Scholar]
  26. Gazzinelli R. T. , Makino M. , Chattopadhyay S. K. , Snapper C. M. , Sher A. , Hügin A. W. , Morse H. C. III . ( 1992;). CD4+ subset regulation in viral infection. Preferential activation of Th2 cells during progression of retrovirus-induced immunodeficiency in mice. J Immunol 148: 182–188 [PubMed].
    [Google Scholar]
  27. Giordanengo L. , Guiñazú N. , Stempin C. , Fretes R. , Cerbán F. , Gea S. . ( 2002;). Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur J Immunol 32: 1003–1011 [CrossRef] [PubMed].
    [Google Scholar]
  28. Goñi O. , Alcaide P. , Fresno M. . ( 2002;). Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G (Gr1+)CD11b+ immature myeloid suppressor cells. Int Immunol 14: 1125–1134 [CrossRef] [PubMed].
    [Google Scholar]
  29. Green K. A. , Crassi K. M. , Laman J. D. , Schoneveld A. , Strawbridge R. R. , Foy T. M. , Noelle R. J. , Green W. R. . ( 1996;). Antibody to the ligand for CD40 (gp39) inhibits murine AIDS-associated splenomegaly, hypergammaglobulinemia, and immunodeficiency in disease-susceptible C57BL/6 mice. J Virol 70: 2569–2575 [PubMed].
    [Google Scholar]
  30. Green K. A. , Noelle R. J. , Green W. R. . ( 1998;). Evidence for a continued requirement for CD40/CD40 ligand (CD154) interactions in the progression of LP-BM5 retrovirus-induced murine AIDS. Virology 241: 260–268 [CrossRef] [PubMed].
    [Google Scholar]
  31. Green K. A. , Noelle R. J. , Durell B. G. , Green W. R. . ( 2001;). Characterization of the CD154-positive and CD40-positive cellular subsets required for pathogenesis in retrovirus-induced murine immunodeficiency. J Virol 75: 3581–3589 [CrossRef] [PubMed].
    [Google Scholar]
  32. Green K. A. , Cook W. J. , Sharpe A. H. , Green W. R. . ( 2002;). The CD154/CD40 interaction required for retrovirus-induced murine immunodeficiency syndrome is not mediated by upregulation of the CD80/CD86 costimulatory molecules. J Virol 76: 13106–13110 [CrossRef] [PubMed].
    [Google Scholar]
  33. Green K. A. , Okazaki T. , Honjo T. , Cook W. J. , Green W. R. . ( 2008;). The programmed death-1 and interleukin-10 pathways play a down-modulatory role in LP-BM5 retrovirus-induced murine immunodeficiency syndrome. J Virol 82: 2456–2469 [CrossRef] [PubMed].
    [Google Scholar]
  34. Green K. A. , Cook W. J. , Green W. R. . ( 2013;). Myeloid-derived suppressor cells in murine retrovirus-induced AIDS inhibit T- and B-cell responses in vitro that are used to define the immunodeficiency. J Virol 87: 2058–2071 [CrossRef] [PubMed].
    [Google Scholar]
  35. Hamann A. . ( 2012;). Regulatory T cells stay on course. Immunity 36: 161–163 [CrossRef] [PubMed].
    [Google Scholar]
  36. Huang B. , Pan P.-Y. , Li Q. , Sato A. I. , Levy D. E. , Bromberg J. , Divino C. M. , Chen S.-H. . ( 2006;). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66: 1123–1131 [CrossRef] [PubMed].
    [Google Scholar]
  37. Huang J. , Jochems C. , Talaie T. , Anderson A. , Jales A. , Tsang K. Y. , Madan R. A. , Gulley J. L. , Schlom J. . ( 2012;). Elevated serum soluble CD40 ligand in cancer patients may play an immunosuppressive role. Blood 120: 3030–3038 [CrossRef] [PubMed].
    [Google Scholar]
  38. Jenabian M.-A. , Seddiki N. , Yatim A. , Carriere M. , Hulin A. , Younas M. , Ghadimi E. , Kök A. , Routy J.-P. , other authors . ( 2013;). Regulatory T cells negatively affect IL-2 production of effector T cells through CD39/adenosine pathway in HIV infection. PLoS Pathog 9: e1003319 [CrossRef] [PubMed].
    [Google Scholar]
  39. Jenabian M.-A. , Patel M. , Kema I. , Vyboh K. , Kanagaratham C. , Radzioch D. , Thébault P. , Lapointe R. , Gilmore N. , other authors . ( 2014;). Soluble CD40-ligand (sCD40L, sCD154) plays an immunosuppressive role via regulatory T cell expansion in HIV infection. Clin Exp Immunol 178: 102–111 [CrossRef] [PubMed].
    [Google Scholar]
  40. Jiang Q. , Zhang L. , Wang R. , Jeffrey J. , Washburn M. L. , Brouwer D. , Barbour S. , Kovalev G. I. , Unutmaz D. , Su L. . ( 2008;). FoxP3+CD4+ regulatory T cells play an important role in acute HIV-1 infection in humanized Rag2− / − (C− / −  mice in vivo. Blood 112: 2858–2868 [CrossRef] [PubMed].
    [Google Scholar]
  41. Kinter A. , McNally J. , Riggin L. , Jackson R. , Roby G. , Fauci A. S. . ( 2007;). Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc Natl Acad Sci U S A 104: 3390–3395 [CrossRef] [PubMed].
    [Google Scholar]
  42. Klinken S. P. , Fredrickson T. N. , Hartley J. W. , Yetter R. A. , Morse H. C. III . ( 1988;). Evolution of B cell lineage lymphomas in mice with a retrovirus-induced immunodeficiency syndrome, MAIDS. J Immunol 140: 1123–1131 [PubMed].
    [Google Scholar]
  43. Klinman D. M. , Morse H. C. III . ( 1989;). Characteristics of B cell proliferation and activation in murine AIDS. J Immunol 142: 1144–1149 [PubMed].
    [Google Scholar]
  44. Ko J. S. , Zea A. H. , Rini B. I. , Ireland J. L. , Elson P. , Cohen P. , Golshayan A. , Rayman P. A. , Wood L. , other authors . ( 2009;). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15: 2148–2157 [CrossRef] [PubMed].
    [Google Scholar]
  45. Li W. , Green W. R. . ( 2006;). The role of CD4 T cells in the pathogenesis of murine AIDS. J Virol 80: 5777–5789 [CrossRef] [PubMed].
    [Google Scholar]
  46. Li W. , Green W. R. . ( 2007;). Murine AIDS requires CD154/CD40L expression by the CD4 T cells that mediate retrovirus-induced disease: is CD4 T cell receptor ligation needed?. Virology 360: 58–71 [CrossRef] [PubMed].
    [Google Scholar]
  47. Li W. , Green W. R. . ( 2011;). Immunotherapy of murine retrovirus-induced acquired immunodeficiency by CD4 T regulatory cell depletion and PD-1 blockade. J Virol 85: 13342–13353 [CrossRef] [PubMed].
    [Google Scholar]
  48. Lim H. W. , Hillsamer P. , Kim C. H. . ( 2004;). Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest 114: 1640–1649 [CrossRef] [PubMed].
    [Google Scholar]
  49. Liovat A.-S. , Rey-Cuillé M.-A. , Lécuroux C. , Jacquelin B. , Girault I. , Petitjean G. , Zitoun Y. , Venet A. , Barré-Sinoussi F. , other authors . ( 2012;). Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection. PLoS One 7: e46143 [CrossRef] [PubMed].
    [Google Scholar]
  50. Liu G. , Bi Y. , Shen B. , Yang H. , Zhang Y. , Wang X. , Liu H. , Lu Y. , Liao J. , other authors . ( 2014;). SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1α-dependent glycolysis. Cancer Res 74: 727–737 [CrossRef] [PubMed].
    [Google Scholar]
  51. Mascanfroni I. D. , Takenaka M. C. , Yeste A. , Patel B. , Wu Y. , Kenison J. E. , Siddiqui S. , Basso A. S. , Otterbein L. E. , other authors . ( 2015;). Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat Med 21: 638–646 [CrossRef] [PubMed].
    [Google Scholar]
  52. Maynard C. L. , Harrington L. E. , Janowski K. M. , Oliver J. R. , Zindl C. L. , Rudensky A. Y. , Weaver C. T. . ( 2007;). Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3 −  precursor cells in the absence of interleukin 10.. Nat Immunol 8: 931–941 [CrossRef] [PubMed].
    [Google Scholar]
  53. Mencacci A. , Montagnoli C. , Bacci A. , Cenci E. , Pitzurra L. , Spreca A. , Kopf M. , Sharpe A. H. , Romani L. . ( 2002;). CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunol 169: 3180–3190 [CrossRef] [PubMed].
    [Google Scholar]
  54. Moir S. , Fauci A. S. . ( 2008;). Pathogenic mechanisms of B-lymphocyte dysfunction in HIV disease. J Allergy Clin Immunol 122: 12–19 quiz 20–21 [CrossRef] [PubMed].
    [Google Scholar]
  55. Moreno-Fernandez M. E. , Presicce P. , Chougnet C. A. . ( 2012;). Homeostasis and function of regulatory T cells in HIV/SIV infection. J Virol 86: 10262–10269 [CrossRef] [PubMed].
    [Google Scholar]
  56. Morse H. C. III , Yetter R. A. , Via C. S. , Hardy R. R. , Cerny A. , Hayakawa K. , Hugin A. W. , Miller M. W. , Holmes K. L. , Shearer G. M. . ( 1989;). Functional and phenotypic alterations in T cell subsets during the course of MAIDS, a murine retrovirus-induced immunodeficiency syndrome. J Immunol 143: 844–850 [PubMed].
    [Google Scholar]
  57. Mosier D. E. , Yetter R. A. , Morse H. C. III . ( 1985;). Retroviral induction of acute lymphoproliferative disease and profound immunosuppression in adult C57BL/6 mice. J Exp Med 161: 766–784 [CrossRef] [PubMed].
    [Google Scholar]
  58. Mosier D. E. , Yetter R. A. , Morse H. C. III . ( 1987;). Functional T lymphocytes are required for a murine retrovirus-induced immunodeficiency disease (MAIDS). J Exp Med 165: 1737–1742 [CrossRef] [PubMed].
    [Google Scholar]
  59. Niedbala W. , Cai B. , Liu H. , Pitman N. , Chang L. , Liew F. Y. . ( 2007;). Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40.. Proc Natl Acad Sci U S A 104: 15478–15483 [CrossRef] [PubMed].
    [Google Scholar]
  60. Noman M. Z. , Desantis G. , Janji B. , Hasmim M. , Karray S. , Dessen P. , Bronte V. , Chouaib S. . ( 2014;). PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211: 781–790 [CrossRef] [PubMed].
    [Google Scholar]
  61. O'Connor M. A. , Green W. R. . ( 2013;). The role of indoleamine 2,3-dioxygenase in LP-BPM5 murine retroviral disease progression. Virol J 10: 154 [CrossRef] [PubMed].
    [Google Scholar]
  62. O'Connor M. A. , Green W. R. . ( 2014;). Use of IRF-3 and/or IRF-7 knockout mice to study viral pathogenesis: lessons from a murine retrovirus-induced AIDS model. J Virol 88: 2349–2353 [CrossRef] [PubMed].
    [Google Scholar]
  63. O'Connor M. A. , Fu W. W. , Green K. A. , Green W. R. . ( 2015;). Subpopulations of M-MDSCs from mice infected by an immunodeficiency-causing retrovirus and their differential suppression of T- vs B-cell responses. Virology 485: 263–273.[CrossRef]
    [Google Scholar]
  64. Pan P.-Y. , Ma G. , Weber K. J. , Ozao-Choy J. , Wang G. , Yin B. , Divino C. M. , Chen S.-H. . ( 2010;). Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res 70: 99–108 [CrossRef] [PubMed].
    [Google Scholar]
  65. Phetsouphanh C. , Xu Y. , Zaunders J. . ( 2014;). CD4 T cells mediate both positive and negative regulation of the immune response to HIV infection: complex role of T follicular helper cells and regulatory T cells in pathogenesis. Front Immunol 5: 681 [PubMed].
    [Google Scholar]
  66. Qin A. , Cai W. , Pan T. , Wu K. , Yang Q. , Wang N. , Liu Y. , Yan D. , Hu F. , other authors . ( 2013;). Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol 87: 1477–1490 [CrossRef] [PubMed].
    [Google Scholar]
  67. Rech A. J. , Mick R. , Martin S. , Recio A. , Aqui N. A. , Powell D. J. Jr , Colligon T. A. , Trosko J. A. , Leinbach L. I. , other authors . ( 2012;). CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med 4: 34ra62 [PubMed].
    [Google Scholar]
  68. Redpath S. A. , van der Werf N. , Cervera A. M. , MacDonald A. S. , Gray D. , Maizels R. M. , Taylor M. D. . ( 2013;). ICOS controls Foxp3+ regulatory T-cell expansion, maintenance and IL-10 production during helminth infection. Eur J Immunol 43: 705–715 [CrossRef] [PubMed].
    [Google Scholar]
  69. Robertson S. J. , Messer R. J. , Carmody A. B. , Hasenkrug K. J. . ( 2006;). In vitro suppression of CD8+T cell function by Friend virus-induced regulatory T cells. J Immunol 176: 3342–3349 [CrossRef] [PubMed].
    [Google Scholar]
  70. Schulze zur Wiesch J. , Thomssen A. , Hartjen P. , Tóth I. , Lehmann C. , Meyer-Olson D. , Colberg K. , Frerk S. , Babikir D. , other authors . ( 2011;). Comprehensive analysis of frequency and phenotype of T regulatory cells in HIV infection: CD39 expression of FoxP3+T regulatory cells correlates with progressive disease. J Virol 85: 1287–1297 [CrossRef] [PubMed].
    [Google Scholar]
  71. Serafini P. , Mgebroff S. , Noonan K. , Borrello I. . ( 2008;). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68: 5439–5449 [CrossRef] [PubMed].
    [Google Scholar]
  72. Simard C. , Klein S. J. , Mak T. , Jolicoeur P. . ( 1997;). Studies of the susceptibility of nude, CD4 knockout, and SCID mutant mice to the disease induced by the murine AIDS defective virus. J Virol 71: 3013–3022 [PubMed].
    [Google Scholar]
  73. Simonetta F. , Lecuroux C. , Girault I. , Goujard C. , Sinet M. , Lambotte O. , Venet A. , Bourgeois C. . ( 2012;). Early and long-lasting alteration of effector CD45RA− Foxp3high regulatory T-cell homeostasis during HIV infection. J Infect Dis 205: 1510–1519 [CrossRef] [PubMed].
    [Google Scholar]
  74. Suchard M. S. , Mayne E. , Green V. A. , Shalekoff S. , Donninger S. L. , Stevens W. S. , Gray C. M. , Tiemessen C. T. . ( 2010;). FOXP3 expression is upregulated in CD4T cells in progressive HIV-1 infection and is a marker of disease severity. PLoS One 5: e11762 [CrossRef] [PubMed].
    [Google Scholar]
  75. Sui Y. , Hogg A. , Wang Y. , Frey B. , Yu H. , Xia Z. , Venzon D. , McKinnon K. , Smedley J. , other authors . ( 2014;). Vaccine-induced myeloid cell population dampens protective immunity to SIV. J Clin Invest 124: 2538–2549 [CrossRef] [PubMed].
    [Google Scholar]
  76. Sunderkötter C. , Nikolic T. , Dillon M. J. , Van Rooijen N. , Stehling M. , Drevets D. A. , Leenen P. J. M. . ( 2004;). Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172: 4410–4417 [CrossRef] [PubMed].
    [Google Scholar]
  77. Taieb J. , Chaput N. , Schartz N. , Roux S. , Novault S. , Ménard C. , Ghiringhelli F. , Terme M. , Carpentier A. F. , other authors . ( 2006;). Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 176: 2722–2729 [CrossRef] [PubMed].
    [Google Scholar]
  78. Talmadge J. E. , Gabrilovich D. I. . ( 2013;). History of myeloid-derived suppressor cells. Nat Rev Cancer 13: 739–752 [CrossRef] [PubMed].
    [Google Scholar]
  79. Tan C. , Reddy V. , Dannull J. , Ding E. , Nair S. K. , Tyler D. S. , Pruitt S. K. , Lee W. T. . ( 2013;). Impact of anti-CD25 monoclonal antibody on dendritic cell-tumor fusion vaccine efficacy in a murine melanoma model. J Transl Med 11: 148 [CrossRef] [PubMed].
    [Google Scholar]
  80. Terrazas L. I. , Walsh K. L. , Piskorska D. , McGuire E. , Harn D. A. Jr . . ( 2001;). The schistosome oligosaccharide lacto-N-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections. J Immunol 167: 5294–5303 [CrossRef] [PubMed].
    [Google Scholar]
  81. Tseng C.-W. , Hung C.-F. , Alvarez R. D. , Trimble C. , Huh W. K. , Kim D. , Chuang C.-M. , Lin C.-T. , Tsai Y.-C. , other authors . ( 2008;). Pretreatment with cisplatin enhances E7-specific CD8+T-cell-mediated antitumor immunity induced by DNA vaccination. Clin Cancer Res 14: 3185–3192 [CrossRef] [PubMed].
    [Google Scholar]
  82. Uehara S. , Hitoshi Y. , Numata F. , Makino M. , Howard M. , Mizuochi T. , Takatsu K. . ( 1994;). An IFN-γ-dependent pathway plays a critical role in the pathogenesis of murine immunodeficiency syndrome induced by LP-BM5 murine leukemia virus. Int Immunol 6: 1937–1947 [CrossRef] [PubMed].
    [Google Scholar]
  83. Voisin M.-B. , Buzoni-Gatel D. , Bout D. , Velge-Roussel F. . ( 2004;). Both expansion of regulatory GR1+ CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun 72: 5487–5492 [CrossRef] [PubMed].
    [Google Scholar]
  84. Vollbrecht T. , Stirner R. , Tufman A. , Roider J. , Huber R. M. , Bogner J. R. , Lechner A. , Bourquin C. , Draenert R. . ( 2012;). Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS 26: F31–F37 [CrossRef] [PubMed].
    [Google Scholar]
  85. Wesolowski R. , Markowitz J. , Carson W. E. III . ( 2013;). Myeloid derived suppressor cells – a new therapeutic target in the treatment of cancer. J Immunother Cancer 1: 10 [CrossRef] [PubMed].
    [Google Scholar]
  86. Witsch E. J. , Peiser M. , Hutloff A. , Büchner K. , Dorner B. G. , Jonuleit H. , Mages H. W. , Kroczek R. A. . ( 2002;). ICOS and CD28 reversely regulate IL-10 on re-activation of human effector T cells with mature dendritic cells. Eur J Immunol 32: 2680–2686 [CrossRef] [PubMed].
    [Google Scholar]
  87. Workman C. J. , Szymczak-Workman A. L. , Collison L. W. , Pillai M. R. , Vignali D. A. A. . ( 2009;). The development and function of regulatory T cells. Cell Mol Life Sci 66: 2603–2622 [CrossRef] [PubMed].
    [Google Scholar]
  88. Yang R. , Cai Z. , Zhang Y. , Yutzy W. H. IV . , Roby, K. F. & Roden R. B. S. ( 2006;). CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+ myeloid cells.. Cancer Res 66: 6807–6815 [CrossRef] [PubMed].
    [Google Scholar]
  89. Zelinskyy G. , Kraft A. R. M. , Schimmer S. , Arndt T. , Dittmer U. . ( 2006;). Kinetics of CD8+ effector T cell responses and induced CD4+ regulatory T cell responses during Friend retrovirus infection. Eur J Immunol 36: 2658–2670 [CrossRef] [PubMed].
    [Google Scholar]
  90. Zelinskyy G. , Dietze K. K. , Hüsecken Y. P. , Schimmer S. , Nair S. , Werner T. , Gibbert K. , Kershaw O. , Gruber A. D. , other authors . ( 2009;). The regulatory T-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic T-cell response. Blood 114: 3199–3207 [CrossRef] [PubMed].
    [Google Scholar]
  91. Zhou X. , Bailey-Bucktrout S. L. , Jeker L. T. , Penaranda C. , Martínez-Llordella M. , Ashby M. , Nakayama M. , Rosenthal W. , Bluestone J. A. . ( 2009;). Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10: 1000–1007 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000260
Loading
/content/journal/jgv/10.1099/jgv.0.000260
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error