1887

Abstract

Chilli, which encompasses several species in the genus , is widely consumed throughout the world. In the Indian subcontinent, production of chilli is constrained due to chilli leaf curl disease (ChiLCD) caused by begomoviruses. Despite the considerable economic consequences of ChiLCD on chilli cultivation in India, there have been scant studies of the genetic diversity and structure of the begomoviruses that cause this disease. Here we report on a comprehensive survey across major chilli-growing regions in India. Analysis of samples collected in the survey indicates that ChiLCD-infected plants are associated with a complex of begomoviruses (including one previously unreported species) with a diverse group of betasatellites found in crops and weeds. The associated betasatellites neither enhanced the accumulation of the begomovirus components nor reduced the incubation period in . The ChiLCD-associated begomoviruses induced mild symptoms on spp., but both the level of helper virus that accumulated and the severity of symptoms were increased in the presence of cognate betasatellites. Interestingly, most of the begomoviruses were found to be intra-species recombinants. The betasatellites possess high nucleotide variability, and recombination among them was also evident. The nucleotide substitution rates were determined for the AV1 gene of begomoviruses (2.60 × 10 substitutions site year) and the βC1 gene of betasatellites [chilli leaf curl betasatellite (ChiLCB), 2.57 × 10 substitution site year; tomato leaf curl Bangladesh betasatellite (ToLCBDB), 5.22 × 10 substitution site year]. This study underscores the current understanding of Indian ChiLCD-associated begomoviruses and also demonstrates the crucial role of betasatellites in severe disease development in spp.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000254
2015-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/10/3143.html?itemId=/content/journal/jgv/10.1099/jgv.0.000254&mimeType=html&fmt=ahah

References

  1. Bhattacharyya D., Prabu G., Kishore Kumar R., Kushwaha N.K., Sharma V.K., Yusuf Md.A., Chakraborty S.. ( 2015;) A geminivirus betasatellite damages structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J Exp Bot 66: 5881–5895. [CrossRef]
    [Google Scholar]
  2. Briddon R.W., Bull S.E., Mansoor S., Amin I., Markham P.G.. ( 2002;). Universal primers for the PCR-mediated amplification of DNA β: a molecule associated with some monopartite begomoviruses. Mol Biotechnol 20: 315–318 [CrossRef] [PubMed].
    [Google Scholar]
  3. Briddon R.W., Brown J.K., Moriones E., Stanley J., Zerbini M., Zhou X., Fauquet C.M.. ( 2008;). Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Arch Virol 153: 763–781 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brown J.K., Fauquet C.M., Briddon R.W., Zerbini F.M., Moriones E., Navas-Castillo J.. ( 2012;). Family Geminiviridae. . In Virus Taxonomy: Classification and Nomenclature of Viruses – Ninth Report of the International Committee on Taxonomy of Viruses, pp. 351–373. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J.. London: Elsevier;.
    [Google Scholar]
  5. Brown J.K., Zerbini F.M., Navas-Castillo J., Moriones E., Ramos-Sobrinho R., Silva J.C.F., Fiallo-Olivé E., Briddon R.W., Hernández-Zepeda C., other authors. ( 2015;). Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160: 1593–1619 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chakraborty S., Pandey P.K., Banerjee M.K., Kalloo G., Fauquet C.M.. ( 2003;). Tomato leaf curl Gujarat virus, a new begomovirus species causing a severe leaf curl disease of tomato in Varanasi, India. Phytopathology 93: 1485–1495 [CrossRef] [PubMed].
    [Google Scholar]
  7. Chattopadhyay B., Singh A.K., Yadav T., Fauquet C.M., Sarin N.B., Chakraborty S.. ( 2008;). Infectivity of the cloned components of a begomovirus: DNA β complex causing chilli leaf curl disease in India. Arch Virol 153: 533–539 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cui X., Li G., Wang D., Hu D., Zhou X.. ( 2005;). Begomovirus DNA-β encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79: 10764–10775 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dellaporta S.L., Wood J., Hicks J.B.. ( 1983;). A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19–21 [CrossRef].
    [Google Scholar]
  10. Drake J.W.. ( 1993;). Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A 90: 4171–4175 [CrossRef] [PubMed].
    [Google Scholar]
  11. Drummond A.J., Suchard M.A., Xie D., Rambaut A.. ( 2012;). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973 [CrossRef] [PubMed].
    [Google Scholar]
  12. Duffy S., Holmes E.C.. ( 2008;). Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus Tomato yellow leaf curl virus. J Virol 82: 957–965 [CrossRef] [PubMed].
    [Google Scholar]
  13. Duffy S., Holmes E.C.. ( 2009;). Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J Gen Virol 90: 1539–1547 [CrossRef] [PubMed].
    [Google Scholar]
  14. George B., Kumar R.V., Chakraborty S.. ( 2014;). Molecular characterization of Chilli leaf curl virus and satellite molecules associated with leaf curl disease of Amaranthus spp. Virus Genes 48: 397–401 [CrossRef] [PubMed].
    [Google Scholar]
  15. George B., Alam ChM., Kumar R.V., Gnanasekaran P., Chakraborty S.. ( 2015;). Potential linkage between compound microsatellites and recombination in geminiviruses: evidence from comparative analysis. Virology 482: 41–50 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hanley-Bowdoin L., Bejarano E.R., Robertson D., Mansoor S.. ( 2013;). Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11: 777–788 [CrossRef] [PubMed].
    [Google Scholar]
  17. Idris A.M., Shahid M.S., Briddon R.W., Khan A.J., Zhu J.K., Brown J.K.. ( 2011;). An unusual alphasatellite associated with monopartite begomoviruses attenuates symptoms and reduces betasatellite accumulation. J Gen Virol 92: 706–717 [CrossRef] [PubMed].
    [Google Scholar]
  18. Inoue-Nagata A.K., Albuquerque L.C., Rocha W.B., Nagata T.. ( 2004;). A simple method for cloning the complete begomovirus genome using the bacteriophage ϕ29 DNA polymerase. J Virol Methods 116: 209–211 [CrossRef] [PubMed].
    [Google Scholar]
  19. Jyothsna P., Haq Q.M.I., Singh P., Sumiya K.V., Praveen S., Rawat R., Briddon R.W., Malathi V.G.. ( 2013;). Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Appl Microbiol Biotechnol 97: 5457–5471 [CrossRef] [PubMed].
    [Google Scholar]
  20. Khan M.S., Raj S.K., Singh R.. ( 2006;). First report of Tomato leaf curl New Delhi virus infecting chilli in India. Plant Pathol 55: 289 [CrossRef].
    [Google Scholar]
  21. Kosakovsky Pond S.L., Frost S.D.W.. ( 2005;). Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22: 1208–1222 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kumar Y., Hallan V., Zaidi A.. ( 2011;). Chilli leaf curl Palampur virus is a distinct begomovirus species associated with a betasatellite. Plant Pathol 60: 1040–1047 [CrossRef].
    [Google Scholar]
  23. Kumar R.V., Singh A.K., Chakraborty S.. ( 2012;). A new monopartite begomovirus species, Chilli leaf curl Vellanad virus, and associated betasatellites infecting chilli in the Vellanad region of Kerala, India. New Disease Reports 25: 20 [CrossRef].
    [Google Scholar]
  24. Kumari P., Singh A.K., Chattopadhyay B., Chakraborty S.. ( 2010;). Molecular characterization of a new species of Begomovirus and betasatellite causing leaf curl disease of tomato in India. Virus Res 152: 19–29 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lefeuvre P., Moriones E.. ( 2015;). Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Curr Opin Virol 10: 14–19 [CrossRef] [PubMed].
    [Google Scholar]
  26. Lefeuvre P., Lett J.M., Reynaud B., Martin D.P.. ( 2007;). Avoidance of protein fold disruption in natural virus recombinants. PLoS Pathog 3: e181 [CrossRef] [PubMed].
    [Google Scholar]
  27. Li F., Huang C., Li Z., Zhou X.. ( 2014;). Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 10: e1003921 [CrossRef] [PubMed].
    [Google Scholar]
  28. Lima A.T.M., Sobrinho R.R., González-Aguilera J., Rocha C.S., Silva S.J.C., Xavier C.A., Silva F.N., Duffy S., Zerbini F.M.. ( 2013;). Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. J Gen Virol 94: 418–431 [CrossRef] [PubMed].
    [Google Scholar]
  29. Mansoor S., Khan S.H., Bashir A., Saeed M., Zafar Y., Malik K.A., Briddon R., Stanley J., Markham P.G.. ( 1999;). Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259: 190–199 [CrossRef] [PubMed].
    [Google Scholar]
  30. Mansoor S., Zafar Y., Briddon R.W.. ( 2006;). Geminivirus disease complexes: the threat is spreading. Trends Plant Sci 11: 209–212 [CrossRef] [PubMed].
    [Google Scholar]
  31. Martin D.P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P.. ( 2010;). RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26: 2462–2463 [CrossRef] [PubMed].
    [Google Scholar]
  32. Maruthi M.N., Rekha A.R., Mirza S.H., Alam S.N., Colvin J.. ( 2007;). PCR-based detection and partial genome sequencing indicate high genetic diversity in Bangladeshi begomoviruses and their whitefly vector, Bemisia tabaci. Virus Genes 34: 373–385 [CrossRef] [PubMed].
    [Google Scholar]
  33. Melgarejo T.A., Kon T., Rojas M.R., Paz-Carrasco L., Zerbini F.M., Gilbertson R.L.. ( 2013;). Characterization of a New World monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol 87: 5397–5413 [CrossRef] [PubMed].
    [Google Scholar]
  34. Mishra M.D., Raychaudhuri S.P., Jha A.. ( 1963;). Virus causing leaf curl of chilli (Capsicum annuum L.). Indian J Microbiol 3: 73–76.
    [Google Scholar]
  35. Muhire B.M., Varsani A., Martin D.P.. ( 2014;). SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9: e108277 [CrossRef] [PubMed].
    [Google Scholar]
  36. Nawaz-ul-Rehman M.S., Fauquet C.M.. ( 2009;). Evolution of geminiviruses and their satellites. FEBS Lett 583: 1825–1832 [CrossRef] [PubMed].
    [Google Scholar]
  37. Nawaz-ul-Rehman M.S., Nahid N., Mansoor S., Briddon R.W., Fauquet C.M.. ( 2010;). Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. Virology 405: 300–308 [CrossRef] [PubMed].
    [Google Scholar]
  38. Nawaz-ul-Rehman M.S., Briddon R.W., Fauquet C.M.. ( 2012;). A melting pot of Old World begomoviruses and their satellites infecting a collection of Gossypium species in Pakistan. PLoS One 7: e40050 [CrossRef] [PubMed].
    [Google Scholar]
  39. Padidam M., Sawyer S., Fauquet C.M.. ( 1999;). Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218–225 [CrossRef] [PubMed].
    [Google Scholar]
  40. Prasanna H.C., Sinha D.P., Verma A., Singh M., Singh B., Rai M., Martin D.P.. ( 2010;). The population genomics of begomoviruses: global scale population structure and gene flow. Virol J 7: 220 [CrossRef] [PubMed].
    [Google Scholar]
  41. Pritchard J.K., Stephens M., Donnelly P.. ( 2000;). Inference of population structure using multilocus genotype data. Genetics 155: 945–959 [PubMed].
    [Google Scholar]
  42. Ranjan P., Singh A.K., Kumar R.V., Basu S., Chakraborty S.. ( 2014;). Host-specific adaptation of diverse betasatellites associated with distinct Indian tomato-infecting begomoviruses. Virus Genes 48: 334–342 [CrossRef] [PubMed].
    [Google Scholar]
  43. Rocha C.S., Castillo-Urquiza G.P., Lima A.T.M., Silva F.N., Xavier C.A., Hora-Júnior B.T., Beserra-Júnior J.E., Malta A.W., Martin D.P., other authors. ( 2013;). Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. J Virol 87: 5784–5799 [CrossRef] [PubMed].
    [Google Scholar]
  44. Rojas M.R., Gilbertson R.L., Russel D.R., Maxwell D.P.. ( 1993;). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease 77: 340–347 [CrossRef].
    [Google Scholar]
  45. Rozas J., Sánchez-DelBarrio J.C., Messeguer X., Rozas R.. ( 2003;). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 2496–2497 [CrossRef] [PubMed].
    [Google Scholar]
  46. Saunders K., Bedford I.D., Briddon R.W., Markham P.G., Wong S.M., Stanley J.. ( 2000;). A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci U S A 97: 6890–6895 [CrossRef] [PubMed].
    [Google Scholar]
  47. Saunders K., Norman A., Gucciardo S., Stanley J.. ( 2004;). The DNA β satellite component associated with ageratum yellow vein disease encodes an essential pathogenicity protein (βC1). Virology 324: 37–47 [CrossRef] [PubMed].
    [Google Scholar]
  48. Senanayake D.M.J.B., Mandal B., Lodha S., Varma A.. ( 2007;). First report of Chilli leaf curl virus affecting chilli in India. Plant Pathol 56: 343 [CrossRef].
    [Google Scholar]
  49. Senanayake D.M.J.B., Jayasinghe J.E.A.R.M., Shilpi S., Wasala S.K., Mandal B.. ( 2013;). A new begomovirus-betasatellite complex is associated with chilli leaf curl disease in Sri Lanka. Virus Genes 46: 128–139 [CrossRef] [PubMed].
    [Google Scholar]
  50. Shih S.L., Tsai W.S., Green S.K., Singh D.. ( 2007;). First report of Tomato leaf curl Joydebpur virus infecting chilli in India. Plant Pathol 56: 341 [CrossRef].
    [Google Scholar]
  51. Silva S.J.C., Castillo-Urquiza G.P., Hora-Junior B.T., Assuncao I.P., Lima G.S.A., Pio-Ribeiro G., Mizubuti E.S.G., Zerbini F.M.. ( 2012;). Species diversity, phylogeny and genetic variability of begomovirus populations infecting leguminous weeds in northeastern Brazil. Plant Pathol 61: 457–467 [CrossRef].
    [Google Scholar]
  52. Singh A.K., Chattopadhyay B., Chakraborty S.. ( 2012;). Biology and interactions of two distinct monopartite begomoviruses and betasatellites associated with radish leaf curl disease in India. Virol J 9: 43 [CrossRef] [PubMed].
    [Google Scholar]
  53. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  54. Varma A., Malathi V.G.. ( 2003;). Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142: 145–164 [CrossRef].
    [Google Scholar]
  55. Varsani A., Navas-Castillo J., Moriones E., Hernández-Zepeda C., Idris A., Brown J.K., Murilo Zerbini F., Martin D.P.. ( 2014;). Establishment of three new genera in the family Geminiviridae, Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 159: 2193–2203 [CrossRef] [PubMed].
    [Google Scholar]
  56. Wyatt S.D., Brown J.K.. ( 1996;). Detection of subgroup III geminivirus isolates in leaf extracts by degenerate primers and polymerase chain reaction. Phytopathology 86: 1288–1293 [CrossRef].
    [Google Scholar]
  57. Yang X., Xie Y., Raja P., Li S., Wolf J.N., Shen Q., Bisaro D.M., Zhou X.. ( 2011;). Suppression of methylation-mediated transcriptional gene silencing by βC1-SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog 7: e1002329 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000254
Loading
/content/journal/jgv/10.1099/jgv.0.000254
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error