1887

Abstract

Hordeivirus movement protein encoded by the first gene of the triple gene block (TGB1 protein, TGBp1) interacts with viral genomic and subgenomic RNAs to form ribonucleoprotein (RNP) particles that are considered to be a form of viral genome (non-virion transport form) capable of cell-to-cell and long-distance transport in infected plants. The structures of these RNPs have not been elucidated. The poa semilatent virus (PSLV) TGBp1 contains a structured C-terminal NTPase/helicase domain and an N-terminal extension region consisting of two domains – a completely intrinsically disordered extreme N-terminal domain and an internal domain (ID) with structure resembling a partially disordered molten globule. Here, we characterized the structures assembled by the full-length PSLV TGBp1 alone or in the presence of viral RNA. The PSLV TGBp1 was capable of multimerization and self-assembly into extended high-molecular-mass complexes. These complexes disassembled to apparent monomers upon incubation with ATP. Upon incubation with viral RNA, the PSLV TGBp1 formed RNP structures that appeared as filamentous particles resembling virions of helical filamentous plant viruses in morphology and dimensions. By comparing the biophysical characteristics of PSLV TGBp1 and its domains in the presence and absence of RNA, we show that the ID plays the main structural role in the self-interactions and RNA interactions of TGBp1 leading to the assembly of virus-like RNP particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000252
2015-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/11/3422.html?itemId=/content/journal/jgv/10.1099/jgv.0.000252&mimeType=html&fmt=ahah

References

  1. Anindya R., Savithri H.S. 2003; Surface-exposed amino- and carboxy-terminal residues are crucial for the initiation of assembly in Pepper vein banding virus: a flexuous rod-shaped virus. Virology 316:325–336 [View Article][PubMed]
    [Google Scholar]
  2. Barilla D., Rosenberg M.F., Nobbmann U., Hayes F. 2005; Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J 24:1453–1464 [CrossRef]
    [Google Scholar]
  3. Bleykasten C., Gilmer D., Guilley H., Richards K.E., Jonard G. 1996; Beet necrotic yellow vein virus 42 kDa triple gene block protein binds nucleic acid in vitro . J Gen Virol 77:889–897 [View Article][PubMed]
    [Google Scholar]
  4. Brakke M.K., Ball E.M., Langenberg W.G. 1988; A non-capsid protein associated with unencapsidated virus RNA in barley infected with barley stripe mosaic virus. J Gen Virol 69:481–491 [View Article]
    [Google Scholar]
  5. Díaz-Avalos R., Caspar D.L.D. 1998; Structure of the stacked disk aggregate of tobacco mosaic virus protein. Biophys J 74:595–603 [View Article][PubMed]
    [Google Scholar]
  6. Donald R.G., Lawrence D.M., Jackson A.O. 1997; The barley stripe mosaic virus 58-kilodalton beta(b) protein is a multifunctional RNA binding protein. J Virol 71:1538–1546[PubMed]
    [Google Scholar]
  7. Gorbalenya A.E., Koonin E.V. 1993; Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429 [View Article]
    [Google Scholar]
  8. Iseni F., Barge A., Baudin F., Blondel D., Ruigrok R.W. 1998; Characterization of rabies virus nucleocapsids and recombinant nucleocapsid-like structures. J Gen Virol 79:2909–2919[PubMed] [CrossRef]
    [Google Scholar]
  9. Ivanyi-Nagy R., Lavergne J.P., Gabus C., Ficheux D., Darlix J.L. 2008; RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae . Nucleic Acids Res 36:712–725 [View Article][PubMed]
    [Google Scholar]
  10. Jackson A.O., Lim H.-S., Bragg J., Ganesan U., Lee M.Y. 2009; Hordeivirus replication, movement, and pathogenesis. Annu Rev Phytopathol 47:385–422 [View Article][PubMed]
    [Google Scholar]
  11. Kalinina N.O., Rakitina D.A., Yelina N.E., Zamyatnin A.A. Jr, Stroganova T.A., Klinov D.V., Prokhorov V.V., Ustinova S.V., Chernov B.K., other authors. 2001; RNA-binding properties of the 63 kDa protein encoded by the triple gene block of poa semilatent hordeivirus. J Gen Virol 82:2569–2578[PubMed] [CrossRef]
    [Google Scholar]
  12. Kalinina N.O., Rakitina D.V., Solovyev A.G., Schiemann J., Morozov S.Y. 2002; RNA helicase activity of the plant virus movement proteins encoded by the first gene of the triple gene block. Virology 296:321–329 [View Article][PubMed]
    [Google Scholar]
  13. Kim S.-H., Kalinina N.O., Andreev I., Ryabov E.V., Fitzgerald A.G., Taliansky M.E., Palukaitis P. 2004; The C-terminal 33 amino acids of the cucumber mosaic virus 3a protein affect virus movement, RNA binding and inhibition of infection and translation. J Gen Virol 85:221–230 [View Article][PubMed]
    [Google Scholar]
  14. Kim S.-H., Macfarlane S., Kalinina N.O., Rakitina D.V., Ryabov E.V., Gillespie T., Haupt S., Brown J.W., Taliansky M. 2007; Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci U S A 104:11115–11120 [View Article][PubMed]
    [Google Scholar]
  15. Kiselyova O.I., Yaminsky I.V., Karger E.M., Frolova O.Y., Dorokhov Y.L., Atabekov J.G. 2001; Visualization by atomic force microscopy of tobacco mosaic virus movement protein-RNA complexes formed in vitro . J Gen Virol 82:1503–1508[PubMed] [CrossRef]
    [Google Scholar]
  16. Leshchiner A.D., Solovyev A.G., Morozov S.Yu., Kalinina N.O. 2006; A minimal region in the NTPase/helicase domain of the TGBp1 plant virus movement protein is responsible for ATPase activity and cooperative RNA binding. J Gen Virol 87:3087–3095 [View Article][PubMed]
    [Google Scholar]
  17. Lim H.S., Bragg J.N., Ganesan U., Lawrence D.M., Yu J., Isogai M., Hammond J., Jackson A.O. 2008; Triple gene block protein interactions involved in movement of Barley stripe mosaic virus . J Virol 82:4991–5006 [View Article][PubMed]
    [Google Scholar]
  18. Longhi S., Receveur-Bréchot V., Karlin D., Johansson K., Darbon H., Bhella D., Yeo R., Finet S., Canard B. 2003; The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278:18638–18648 [View Article][PubMed]
    [Google Scholar]
  19. Lukhovitskaya N.I., Cowan G.H., Vetukuri R.R., Tilsner J., Torrance L., Savenkov E.I. 2015; Importin-α-mediated nucleolar localization of potato mop-top virus TRIPLE GENE BLOCK1 (TGB1) protein facilitates virus systemic movement, whereas TGB1 self-interaction is required for cell-to-cell movement in Nicotiana benthamiana . Plant Physiol 167:738–752 [View Article][PubMed]
    [Google Scholar]
  20. Makarov V.V., Rybakova E.N., Efimov A.V., Dobrov E.N., Serebryakova M.V., Solovyev A.G., Yaminsky I.V., Taliansky M.E., Morozov S.Yu., Kalinina N.O. 2009; Domain organization of the N-terminal portion of hordeivirus movement protein TGBp1. J Gen Virol 90:3022–3032 [View Article][PubMed]
    [Google Scholar]
  21. Makarov V.V., Obraztsova E.A., Solovyev A.G., Morozov S.Yu., Taliansky M.E., Yaminsky I.V., Kalinina N.O. 2010; The internal domain of hordeivirus movement protein TGB1 forms in vitro filamentous structures. Biochemistry (Mosc) 75:752–758 [View Article][PubMed]
    [Google Scholar]
  22. Makarov V.V., Dobrov E.N., Taliansky M.E., Kalinina N.O. 2012; N-terminal portion of hordeivirus movement TGB1 protein consists of two domains with different content of disordered structure. In Flexible Viruses: Structural Disorder in Viral Proteins pp. 445–472 Edited by Longhi S., Uversky V. N. New York: Wiley;
    [Google Scholar]
  23. Morozov S.Yu., Solovyev A.G. 2003; Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366 [View Article][PubMed]
    [Google Scholar]
  24. Murzin A.G. 1993; OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12:861–867[PubMed]
    [Google Scholar]
  25. Mushegian A.R., Elena S.F. 2015; Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes. Virology 476:304–315 [View Article][PubMed]
    [Google Scholar]
  26. Namba K. 2001; Roles of partly unfolded conformations in macromolecular self-assembly. Genes Cells 6:1–12 [View Article][PubMed]
    [Google Scholar]
  27. Naveed H., Liang J. 2014; Weakly stable regions and protein-protein interactions in beta-barrel membrane proteins. Curr Pharm Des 20:1268–1273 [View Article][PubMed]
    [Google Scholar]
  28. Nemykh M.A., Efimov A.V., Novikov V.K., Orlov V.N., Arutyunyan A.M., Drachev V.A., Lukashina E.V., Baratova L.A., Dobrov E.N. 2008; One more probable structural transition in potato virus X virions and a revised model of the virus coat protein structure. Virology 373:61–71 [View Article][PubMed]
    [Google Scholar]
  29. Nurkiyanova K.M., Ryabov E.V., Kalinina N.O., Fan Y., Andreev I., Fitzgerald A.G., Palukaitis P., Taliansky M. 2001; Umbravirus-encoded movement protein induces tubule formation on the surface of protoplasts and binds RNA incompletely and non-cooperatively. J Gen Virol 82:2579–2588[PubMed] [CrossRef]
    [Google Scholar]
  30. Petty I.T., Jackson A.O. 1990; Mutational analysis of barley stripe mosaic virus RNA beta. Virology 179:712–718 [View Article][PubMed]
    [Google Scholar]
  31. Privalov P.L. 1990; Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–306 [View Article][PubMed]
    [Google Scholar]
  32. Rodionova N.P., Karpova O.V., Kozlovsky S.V., Zayakina O.V., Arkhipenko M.V., Atabekov J.G. 2003; Linear remodeling of helical virus by movement protein binding. J Mol Biol 333:565–572 [View Article][PubMed]
    [Google Scholar]
  33. Ruigrok R.W., Baudin F. 1995; Structure of influenza virus ribonucleoprotein particles. II. Purified RNA-free influenza virus ribonucleoprotein forms structures that are indistinguishable from the intact influenza virus ribonucleoprotein particles. J Gen Virol 76:1009–1014 [View Article][PubMed]
    [Google Scholar]
  34. Savenkov E.I., Germundsson A., Zamyatnin A.A. Jr, Sandgren M., Valkonen J.P. 2003; Potato mop-top virus: the coat protein-encoding RNA and the gene for cysteine-rich protein are dispensable for systemic virus movement in Nicotiana benthamiana . J Gen Virol 84:1001–1005 [View Article][PubMed]
    [Google Scholar]
  35. Semashko M.A., González I., Shaw J., Leonova O.G., Popenko V.I., Taliansky M.E., Canto T., Kalinina N.O. 2012a; The extreme N-terminal domain of a hordeivirus TGB1 movement protein mediates its localization to the nucleolus and interaction with fibrillarin. Biochimie 94:1180–1188 [View Article][PubMed]
    [Google Scholar]
  36. Semashko M.A., Rakitina D.V., González I., Canto T., Kalinina N.O., Taliansky M.E. 2012b; Movement protein of hordeivirus interacts in vitro and in vivo with coilin, a major structural protein of Cajal bodies. Dokl Biochem Biophys 442:57–60 [View Article][PubMed]
    [Google Scholar]
  37. Skabkin M.A., Kiselyova O.I., Chernov K.G., Sorokin A.V., Dubrovin E.V., Yaminsky I.V., Vasiliev V.D., Ovchinnikov L.P. 2004; Structural organization of mRNA complexes with major core mRNP protein YB-1. Nucleic Acids Res 32:5621–5635 [View Article][PubMed]
    [Google Scholar]
  38. Solovyev A.G., Savenkov E.I. 2014; Factors involved in the systemic transport of plant RNA viruses: the emerging role of the nucleus. J Exp Bot 65:1689–1697 [View Article][PubMed]
    [Google Scholar]
  39. Solovyev A.G., Savenkov E.I., Grdzelishvili V.Z., Kalinina N.O., Morozov S.Y., Schiemann J., Atabekov J.G. 1999; Movement of hordeivirus hybrids with exchanges in the triple gene block. Virology 253:278–287 [View Article][PubMed]
    [Google Scholar]
  40. Taliansky M., Roberts I.M., Kalinina N., Ryabov E.V., Raj S.K., Robinson D.J., Oparka K.J. 2003; An umbraviral protein, involved in long-distance RNA movement, binds viral RNA and forms unique, protective ribonucleoprotein complexes. J Virol 77:3031–3040 [View Article][PubMed]
    [Google Scholar]
  41. Taliansky M.E., Brown J.W.S., Rajamäki M.L., Valkonen J.P.T., Kalinina N.O. 2010; Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv Virus Res 77:119–158 [View Article]
    [Google Scholar]
  42. Torrance L., Lukhovitskaya N.I., Schepetilnikov M.V., Cowan G.H., Ziegler A., Savenkov E.I. 2009; Unusual long-distance movement strategies of Potato mop-top virus RNAs in Nicotiana benthamiana . Mol Plant Microbe Interact 22:381–390 [View Article][PubMed]
    [Google Scholar]
  43. Tremblay M.-H., Majeau N., Gagné M.E., Lecours K., Morin H., Duvignaud J.-B., Bolduc M., Chouinard N., Paré C., other authors. 2006; Effect of mutations K97A and E128A on RNA binding and self assembly of papaya mosaic potexvirus coat protein. FEBS J 273:14–25 [View Article][PubMed]
    [Google Scholar]
  44. Uversky V., Longhi S. editors 2011 Flexible Viruses: Structural Disorder in Viral Proteins New York: Wiley;
    [Google Scholar]
  45. Verchot-Lubicz J., Torrance L., Solovyev A.G., Morozov S.Yu., Jackson A.O., Gilmer D. 2010; Varied movement strategies employed by triple gene block-encoding viruses. Mol Plant Microbe Interact 23:1231–1247 [View Article][PubMed]
    [Google Scholar]
  46. Wright K.M., Cowan G.H., Lukhovitskaya N.I., Tilsner J., Roberts A.G., Savenkov E.I., Torrance L. 2010; The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localization, microtubule association, and long-distance movement. Mol Plant Microbe Interact 23:1486–1497 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000252
Loading
/content/journal/jgv/10.1099/jgv.0.000252
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error