1887

Abstract

Salmonid alphavirus (SAV) is the causative agent of pancreas disease affecting Atlantic salmon and rainbow trout and causes a major burden to the aquaculture industry. This study describes a Norwegian subtype SAV3 virus isolate (SAV3-H10) subjected to serial passages in Chinook salmon embryo cells (CHSE-214) followed by Asian Grouper skin cells (AGK). Two passages from CHSE and one after transfer to AGK cells were chosen for further investigation, based on variation in degree and development of cytopathic effect (CPE). After plaque purification, several studies were performed. Cell viability after infection, viral replication and ability to cause morphological changes in CHSE and AGK cells was studied for the three isolates. The AGK-transferred isolate was identified with the strongest abilities to reduce cell viability, replicate more and cause more CPE in cell culture when compared with the early and late CHSE-grown isolates. Subsequently, the isolates were tested in an experimental fish challenge, showing higher viral load and higher pathological score for the least cell-cultured isolate. Full-length sequencing of the viral genome of the three isolates revealed divergence in four amino acid positions and the AGK-grown isolate also had a 3 nt deletion in the 3′UTR. In conclusion, we show that cell culture of SAV3-H10 selects for strains inducing earlier CPE with increased viral replication. , the effect is reversed, with lower replication levels and lower pathology scores in target organs. This study outlines a path to identify potential virulence motifs of SAV3.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000242
2015-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/10/3023.html?itemId=/content/journal/jgv/10.1099/jgv.0.000242&mimeType=html&fmt=ahah

References

  1. Andersen L., Bratland A., Hodneland K., Nylund A. 2007; Tissue tropism of salmonid alphaviruses (subtypes SAV1 and SAV3) in experimentally challenged Atlantic salmon (Salmo salar L.). Arch Virol 152:1871–1883 [View Article][PubMed]
    [Google Scholar]
  2. Bernard K.A., Klimstra W.B., Johnston R.E. 2000; Mutations in the E2 glycoprotein of Venezuelan equine encephalitis virus confer heparan sulfate interaction, low morbidity, and rapid clearance from blood of mice. Virology 276:93–103 [View Article][PubMed]
    [Google Scholar]
  3. Byrnes A.P., Griffin D.E. 1998; Binding of Sindbis virus to cell surface heparan sulfate. J Virol 72:7349–7356[PubMed]
    [Google Scholar]
  4. Byrnes A.P., Griffin D.E. 2000; Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J Virol 74:644–651 [View Article][PubMed]
    [Google Scholar]
  5. Castric J., Baudin-Laurencin F., Brèmont M., Le Ven A., Bèarzotti M. 1997; Isolation of the virus responsible for sleeping-disease in experimentally infected rainbow-trout Oncorhynchus mykiss . Bull Eur Assoc Fish Pathol 17:27–30
    [Google Scholar]
  6. Chen L., Evensen Ø., Mutoloki S. 2014; Delayed protein shut down and cytopathic changes lead to high yields of infectious pancreatic necrosis virus cultured in Asian Grouper cells. J Virol Methods 195:228–235 [View Article][PubMed]
    [Google Scholar]
  7. Cheng R.H., Kuhn R.J., Olson N.H., Rossmann M.G., Choi H.K., Smith T.J., Baker T.S. 1995; Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80:621–630 [View Article][PubMed]
    [Google Scholar]
  8. Davis N.L., Powell N., Greenwald G.F., Willis L.V., Johnson B.J., Smith J.F., Johnston R.E. 1991; Attenuating mutations in the E2 glycoprotein gene of Venezuelan equine encephalitis virus: construction of single and multiple mutants in a full-length cDNA clone. Virology 183:20–31 [View Article][PubMed]
    [Google Scholar]
  9. Fazakerley J.K., Parker S.E., Bloom F., Buchmeier M.J. 1992; The V5A13.1 envelope glycoprotein deletion mutant of mouse hepatitis virus type-4 is neuroattenuated by its reduced rate of spread in the central nervous system. Virology 187:178–188 [View Article][PubMed]
    [Google Scholar]
  10. Fringuelli E., Rowley H.M., Wilson J.C., Hunter R., Rodger H., Graham D.A. 2008; Phylogenetic analyses and molecular epidemiology of European salmonid alphaviruses (SAV) based on partial E2 and nsP3 gene nucleotide sequences. J Fish Dis 31:811–823 [View Article][PubMed]
    [Google Scholar]
  11. Gardner C.L., Hritz J., Sun C., Vanlandingham D.L., Song T.Y., Ghedin E., Higgs S., Klimstra W.B., Ryman K.D. 2014; Deliberate attenuation of chikungunya virus by adaptation to heparan sulfate-dependent infectivity: a model for rational arboviral vaccine design. PLoS Negl Trop Dis 8:e2719 [View Article][PubMed]
    [Google Scholar]
  12. Glasgow G.M., Sheahan B.J., Atkins G.J., Wahlberg J.M., Salminen A., Liljeström P. 1991; Two mutations in the envelope glycoprotein E2 of Semliki Forest virus affecting the maturation and entry patterns of the virus alter pathogenicity for mice. Virology 185:741–748 [View Article][PubMed]
    [Google Scholar]
  13. Guo T.C., Johansson D.X., Haugland Ø., Liljeström P., Evensen Ø. 2014; A 6K-deletion variant of salmonid alphavirus is non-viable but can be rescued through RNA recombination. PLoS One 9:e100184 [View Article][PubMed]
    [Google Scholar]
  14. Hardy R.W., Rice C.M. 2005; Requirements at the 3′ end of the Sindbis virus genome for efficient synthesis of minus-strand RNA. J Virol 79:4630–4639 [View Article][PubMed]
    [Google Scholar]
  15. Heil M.L., Albee A., Strauss J.H., Kuhn R.J. 2001; An amino acid substitution in the coding region of the E2 glycoprotein adapts Ross River virus to utilize heparan sulfate as an attachment moiety. J Virol 75:6303–6309 [View Article][PubMed]
    [Google Scholar]
  16. Hjortaas M.J., Skjelstad H.R., Taksdal T., Olsen A.B., Johansen R., Bang-Jensen B., Ørpetveit I., Sindre H. 2013; The first detections of subtype 2-related salmonid alphavirus (SAV2) in Atlantic salmon, Salmo salar L., in Norway. J Fish Dis 36:71–74 [View Article][PubMed]
    [Google Scholar]
  17. Hodneland K., Bratland A., Christie K.E., Endresen C., Nylund A. 2005; New subtype of salmonid alphavirus (SAV), Togaviridae, from Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss in Norway. Dis Aquat Organ 66:113–120 [View Article][PubMed]
    [Google Scholar]
  18. Jansen M.D., Gjerset B., Modahl I., Bohlin J. 2010; Molecular epidemiology of salmonid alphavirus (SAV) subtype 3 in Norway. Virol J 7:188 [View Article][PubMed]
    [Google Scholar]
  19. Kärber G. 1931; Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch Exp Pathol Pharmakol 162:480–483 [CrossRef]
    [Google Scholar]
  20. Karlsen M., Hodneland K., Endresen C., Nylund A. 2006; Genetic stability within the Norwegian subtype of salmonid alphavirus (family Togaviridae). Arch Virol 151:861–874 [View Article][PubMed]
    [Google Scholar]
  21. Karlsen M., Villoing S., Rimstad E., Nylund A. 2009; Characterization of untranslated regions of the salmonid alphavirus 3 (SAV3) genome and construction of a SAV3 based replicon. Virol J 6:173 [View Article][PubMed]
    [Google Scholar]
  22. Karlsen M., Gjerset B., Hansen T., Rambaut A. 2014; Multiple introductions of salmonid alphavirus from a wild reservoir have caused independent and self-sustainable epizootics in aquaculture. J Gen Virol 95:52–59 [View Article][PubMed]
    [Google Scholar]
  23. Karlsen M., Andersen L., Blindheim S.H., Rimstad E., Nylund A. 2015; A naturally occurring substitution in the E2 protein of Salmonid alphavirus subtype 3 changes viral fitness. Virus Res 196:79–86 [View Article][PubMed]
    [Google Scholar]
  24. Kinney R.M., Chang G.J., Tsuchiya K.R., Sneider J.M., Roehrig J.T., Woodward T.M., Trent D.W. 1993; Attenuation of Venezuelan equine encephalitis virus strain TC-83 is encoded by the 5′-noncoding region and the E2 envelope glycoprotein. J Virol 67:1269–1277[PubMed]
    [Google Scholar]
  25. Klimstra W.B., Ryman K.D., Johnston R.E. 1998; Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72:7357–7366[PubMed]
    [Google Scholar]
  26. Klimstra W.B., Ryman K.D., Bernard K.A., Nguyen K.B., Biron C.A., Johnston R.E. 1999; Infection of neonatal mice with Sindbis virus results in a systemic inflammatory response syndrome. J Virol 73:10387–10398[PubMed]
    [Google Scholar]
  27. Kuhn R.J., Hong Z., Strauss J.H. 1990; Mutagenesis of the 3′ nontranslated region of Sindbis virus RNA. J Virol 64:1465–1476[PubMed]
    [Google Scholar]
  28. Ludwig G.V., Kondig J.P., Smith J.F. 1996; A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J Virol 70:5592–5599[PubMed]
    [Google Scholar]
  29. McKinney R.W., Berge T.O., Sawyer W.D., Tigertt W.D., Crozier D. 1963; Use of an attenuated strain of Venezuelan equine encephalomyelitis virus for immunization in man. Am J Trop Med Hyg 12:597–603[PubMed]
    [Google Scholar]
  30. McLoughlin M.F., Graham D.A. 2007; Alphavirus infections in salmonids—a review. J Fish Dis 30:511–531 [View Article][PubMed]
    [Google Scholar]
  31. McLoughlin M.F., Nelson R.T., Rowley H.M., Cox D.I., Grant A.N. 1996; Experimental pancreas disease in Atlantic salmon Salmo salar post-smolts induced by salmon pancreas disease virus (SPDV). Dis Aquat Organ 26:117–124 [View Article]
    [Google Scholar]
  32. McLoughlin M.F., Graham D.A., Norris A., Matthews D., Foyle L., Rowley H.M., Jewhurst H., MacPhee J., Todd D. 2006; Virological, serological and histopathological evaluation of fish strain susceptibility to experimental infection with salmonid alphavirus. Dis Aquat Organ 72:125–133 [View Article][PubMed]
    [Google Scholar]
  33. Mcvicar A.H. 1987; Pancreas disease of farmed Atlantic salmon, Salmo salar, in Scotland: epidemiology and early pathology. Aquaculture 67:71–78 [View Article]
    [Google Scholar]
  34. Mérour E., Lamoureux A., Bernard J., Biacchesi S., Brémont M. 2013; A fully attenuated recombinant Salmonid alphavirus becomes pathogenic through a single amino acid change in the E2 glycoprotein. J Virol 87:6027–6030 [View Article][PubMed]
    [Google Scholar]
  35. Munang'andu H.M., Fredriksen B.N., Mutoloki S., Brudeseth B., Kuo T.Y., Marjara I.S., Dalmo R.A., Evensen Ø. 2012; Comparison of vaccine efficacy for different antigen delivery systems for infectious pancreatic necrosis virus vaccines in Atlantic salmon (Salmo salar L.) in a cohabitation challenge model. Vaccine 30:4007–4016 [View Article][PubMed]
    [Google Scholar]
  36. Nelson R.T., McLoughlin M.F., Rowley H.M., Platten M.A., Mccormick J.I. 1995; Isolation of a toga-like virus from farmed Atlantic salmon Salmo salar with pancreas disease. Dis Aquat Organ 22:25–32 [View Article]
    [Google Scholar]
  37. Omar A., Koblet H. 1988; Semliki Forest virus particles containing only the E1 envelope glycoprotein are infectious and can induce cell-cell fusion. Virology 166:17–23 [View Article][PubMed]
    [Google Scholar]
  38. Petterson E., Stormoen M., Evensen Ø., Mikalsen A.B., Haugland Ø. 2013; Natural infection of Atlantic salmon (Salmo salar L.) with salmonid alphavirus 3 generates numerous viral deletion mutants. J Gen Virol 94:1945–1954 [View Article][PubMed]
    [Google Scholar]
  39. Pletnev S.V., Zhang W., Mukhopadhyay S., Fisher B.R., Hernandez R., Brown D.T., Baker T.S., Rossmann M.G., Kuhn R.J. 2001; Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 105:127–136 [View Article][PubMed]
    [Google Scholar]
  40. Roukens A.H., Visser L.G. 2008; Yellow fever vaccine: past, present and future. Expert Opin Biol Ther 8:1787–1795 [View Article][PubMed]
    [Google Scholar]
  41. Russell D.L., Dalrymple J.M., Johnston R.E. 1989; Sindbis virus mutations which coordinately affect glycoprotein processing, penetration, and virulence in mice. J Virol 63:1619–1629[PubMed]
    [Google Scholar]
  42. Strauss J.H., Strauss E.G. 1994; The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562[PubMed]
    [Google Scholar]
  43. Taksdal T., Bang Jensen B., Böckerman I., McLoughlin M.F., Hjortaas M.J., Ramstad A., Sindre H. 2014 [View Article] [Epub ahead of print]. [View Article][PubMed] Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. J Fish Dis [Epub ahead of print]
    [Google Scholar]
  44. Welsh M., Weston J., Borghmans B.J., Mackie D., Rowley H., Nelson R., McLoughlin M., Todd D. 2000; Biochemical characterization of salmon pancreas disease virus. J Gen Virol 81:813–820[PubMed] [CrossRef]
    [Google Scholar]
  45. Weston J.H., Welsh M.D., McLoughlin M.F., Todd D. 1999; Salmon pancreas disease virus, an alphavirus infecting farmed Atlantic salmon, Salmo salar L. Virology 256:188–195 [View Article][PubMed]
    [Google Scholar]
  46. Weston J., Villoing S., Brémont M., Castric J., Pfeffer M., Jewhurst V., McLoughlin M., Rødseth O., Christie K.E., other authors. 2002; Comparison of two aquatic alphaviruses, salmon pancreas disease virus and sleeping disease virus, by using genome sequence analysis, monoclonal reactivity, and cross-infection. J Virol 76:6155–6163 [View Article][PubMed]
    [Google Scholar]
  47. Xu C., Guo T.C., Mutoloki S., Haugland Ø., Marjara I.S., Evensen Ø. 2010; Alpha interferon and not gamma interferon inhibits salmonid alphavirus subtype 3 replication in vitro . J Virol 84:8903–8912 [View Article][PubMed]
    [Google Scholar]
  48. Xu C., Guo T.C., Mutoloki S., Haugland O., Evensen O. 2012; Gene expression studies of host response to Salmonid alphavirus subtype 3 experimental infections in Atlantic salmon. Vet Res 43:78 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000242
Loading
/content/journal/jgv/10.1099/jgv.0.000242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error