1887

Abstract

Porcine endogenous retroviruses (PERVs) are present in the genomes of pig cells. The PERV-A/C recombinant virus can infect human cells and is a major risk of zoonotic disease in the case of xenotransplantation of pig organs to humans. Raltegravir (RAL) is a viral integrase (IN) inhibitor used in highly active antiretroviral treatment. In the present study, we explored the potential use of RAL against PERV-A/C. We report (i) a three-dimensional model of the PERV-A/C intasome complexed with RAL, (ii) the sensitivity of PERV-A/C IN to RAL and (iii) the sensitivity of a PERV-A/C-IRES-GFP recombinant virus to RAL . We demonstrated that RAL is a potent inhibitor against PERV-A/C IN and PERV-A/C replication with ICs in the nanomolar range. To date, the use of retroviral inhibitors remains the only way to control the risk of zoonotic PERV infection during pig-to-human xenotransplantation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000236
2015-10-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/10/3124.html?itemId=/content/journal/jgv/10.1099/jgv.0.000236&mimeType=html&fmt=ahah

References

  1. Arnold K. , Bordoli L. , Kopp J. , Schwede T. . ( 2006;). The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bar-Magen T. , Sloan R.D. , Faltenbacher V.H. , Donahue D.A. , Kuhl B.D. , Oliveira M. , Xu H. , Wainberg M.A. . ( 2009;). Comparative biochemical analysis of HIV-1 subtype B and C integrase enzymes. Retrovirology 6: 103 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bartosch B. , Stefanidis D. , Myers R. , Weiss R. , Patience C. , Takeuchi Y. . ( 2004;). Evidence and consequence of porcine endogenous retrovirus recombination. J Virol 78: 13880–13890 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cellier C. , Moreau K. , Gallay K. , Ballandras A. , Gouet P. , Ronfort C. . ( 2013;). In vitro functional analyses of the human immunodeficiency virus type 1 (HIV-1) integrase mutants give new insights into the intasome assembly. Virology 439: 97–104 [CrossRef] [PubMed].
    [Google Scholar]
  5. Charmetant J. , Moreau K. , Gallay K. , Ballandras A. , Gouet P. , Ronfort C. . ( 2011;). Functional analyses of mutants of the central core domain of an Avian Sarcoma/Leukemia Virus integrase. Virology 421: 42–50 [CrossRef] [PubMed].
    [Google Scholar]
  6. DeAnda F. , Hightower K.E. , Nolte R.T. , Hattori K. , Yoshinaga T. , Kawasuji T. , Underwood M.R. . ( 2013;). Dolutegravir interactions with HIV-1 integrase-DNA: structural rationale for drug resistance and dissociation kinetics. PLoS One 8: e77448 [CrossRef] [PubMed].
    [Google Scholar]
  7. DeLano W.L. . ( 2008;). The PyMol Molecular Graphics Systems Palo Alto, CA: DeLano Scientific;.
    [Google Scholar]
  8. Emsley P. , Lohkamp B. , Scott W.G. , Cowtan K. . ( 2010;). Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486–501 [CrossRef] [PubMed].
    [Google Scholar]
  9. Engelman A. . ( 2010;). Reverse transcription and integration. . In Retroviruses: Molecular Biology, Genomics and Pathogenesis, pp. 129–159. Edited by Kurth R. , Bannert N. . Norfolk: Caister Academic Press;.
    [Google Scholar]
  10. Gouet P. , Robert X. , Courcelle E. . ( 2003;). ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31: 3320–3323 [CrossRef] [PubMed].
    [Google Scholar]
  11. Groenen M.A. , Archibald A.L. , Uenishi H. , Tuggle C.K. , Takeuchi Y. , Rothschild M.F. , Rogel-Gaillard C. , Park C. , Milan D. , other authors . ( 2012;). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491: 393–398 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hacein-Bey-Abina S. , Von Kalle C. , Schmidt M. , McCormack M.P. , Wulffraat N. , Leboulch P. , Lim A. , Osborne C.S. , Pawliuk R. , other authors . ( 2003;). LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302: 415–419 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hare S. , Gupta S.S. , Valkov E. , Engelman A. , Cherepanov P. . ( 2010a;). Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464: 232–236 [CrossRef] [PubMed].
    [Google Scholar]
  14. Hare S. , Vos A.M. , Clayton R.F. , Thuring J.W. , Cummings M.D. , Cherepanov P. . ( 2010b;). Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A 107: 20057–20062 [CrossRef] [PubMed].
    [Google Scholar]
  15. Holm L. , Kaariainen S. , Wilton C. , Plewczynski D. . ( 2006;). Using Dali for structural comparison of proteins. Curr Protoc Bioinformatics 14: 5.5.1–5.5.24.
    [Google Scholar]
  16. Jaskolski M. , Alexandratos J.N. , Bujacz G. , Wlodawer A. . ( 2009;). Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS J 276: 2926–2946 [CrossRef] [PubMed].
    [Google Scholar]
  17. Jonsson C.B. , Donzella G.A. , Roth M.J. . ( 1993;). Characterization of the forward and reverse integration reactions of the Moloney murine leukemia virus integrase protein purified from Escherichia coli . J Biol Chem 268: 1462–1469.
    [Google Scholar]
  18. Kimsa M.C. , Strzalka-Mrozik B. , Kimsa M.W. , Gola J. , Nicholson P. , Lopata K. , Mazurek U. . ( 2014;). Porcine endogenous retroviruses in xenotransplantation – molecular aspects. Viruses 6: 2062–2083 [CrossRef] [PubMed].
    [Google Scholar]
  19. Koh Y. , Matreyek K.A. , Engelman A. . ( 2011;). Differential sensitivities of retroviruses to integrase strand transfer inhibitors. J Virol 85: 3677–3682 [CrossRef] [PubMed].
    [Google Scholar]
  20. Krishnan L , Li X. , Naraharisetty H.L. , Hare S. , Cherepanov P. , Engelman A. . ( 2010;). Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proceedings of the National Academy of Sciences of the United States of America 107: 15910–15915.[CrossRef]
    [Google Scholar]
  21. Kvaratskhelia M. , Sharma A. , Larue R.C. , Serrao E. , Engelman A. . ( 2014;). Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res 42: 10209–10225 [CrossRef] [PubMed].
    [Google Scholar]
  22. Maertens G.N. , Hare S. , Cherepanov P. . ( 2010;). The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468: 326–329 [CrossRef] [PubMed].
    [Google Scholar]
  23. Martin S.I. , Wilkinson R. , Fishman J.A. . ( 2006;). Genomic presence of recombinant porcine endogenous retrovirus in transmitting miniature swine. Virol J 3: 91 [CrossRef] [PubMed].
    [Google Scholar]
  24. Mitchell R.S. , Beitzel B.F. , Schroder A.R. , Shinn P. , Chen H. , Berry C.C. , Ecker J.R. , Bushman F.D. . ( 2004;). Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2: E234 [CrossRef] [PubMed].
    [Google Scholar]
  25. Moalic Y. , Blanchard Y. , Félix H. , Jestin A. . ( 2006;). Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus. J Virol 80: 10980–10988 [CrossRef] [PubMed].
    [Google Scholar]
  26. Moalic Y. , Félix H. , Takeuchi Y. , Jestin A. , Blanchard Y. . ( 2009;). Genome areas with high gene density and CpG island neighborhood strongly attract porcine endogenous retrovirus for integration and favor the formation of hot spots. J Virol 83: 1920–1929 [CrossRef] [PubMed].
    [Google Scholar]
  27. Moreau K. , Faure C. , Verdier G. , Ronfort C. . ( 2002;). Analysis of conserved and non-conserved amino acids critical for ALSV (Avian leukemia and sarcoma viruses) integrase functions in vitro . Arch Virol 147: 1761–1778 [CrossRef] [PubMed].
    [Google Scholar]
  28. Moreau K. , Faure C. , Violot S. , Verdier G. , Ronfort C. . ( 2003;). Mutations in the C-terminal domain of ALSV (Avian Leukemia and Sarcoma Viruses) integrase alter the concerted DNA integration process in vitro . Eur J Biochem 270: 4426–4438 [CrossRef] [PubMed].
    [Google Scholar]
  29. Moreau K. , Faure C. , Violot S. , Gouet P. , Verdier G. , Ronfort C. . ( 2004;). Mutational analyses of the core domain of Avian Leukemia and Sarcoma Viruses integrase: critical residues for concerted integration and multimerization. Virology 318: 566–581 [CrossRef] [PubMed].
    [Google Scholar]
  30. Moreau K. , Charmetant J. , Gallay K. , Faure C. , Verdier G. , Ronfort C. . ( 2009;). Avian sarcoma and leukemia virus (ASLV) integration in vitro: mutation or deletion of integrase (IN) recognition sequences does not prevent but only reduces the efficiency and accuracy of DNA integration. Virology 392: 94–102 [CrossRef] [PubMed].
    [Google Scholar]
  31. Nowrouzi A. , Dittrich M. , Klanke C. , Heinkelein M. , Rammling M. , Dandekar T. , von Kalle C. , Rethwilm A. . ( 2006;). Genome-wide mapping of foamy virus vector integrations into a human cell line. J Gen Virol 87: 1339–1347 [CrossRef] [PubMed].
    [Google Scholar]
  32. Patience C. , Takeuchi Y. , Weiss R.A. . ( 1997;). Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3: 282–286 [CrossRef] [PubMed].
    [Google Scholar]
  33. Qari S.H. , Magre S. , García-Lerma J.G. , Hussain A.I. , Takeuchi Y. , Patience C. , Weiss R.A. , Heneine W. . ( 2001;). Susceptibility of the porcine endogenous retrovirus to reverse transcriptase and protease inhibitors. J Virol 75: 1048–1053 [CrossRef] [PubMed].
    [Google Scholar]
  34. Raffi F. , Jaeger H. , Quiros-Roldan E. , Albrecht H. , Belonosova E. , Gatell J.M. , Baril J.G. , Domingo P. , Brennan C. , other authors . ( 2013;). Once-daily dolutegravir versus twice-daily raltegravir in antiretroviral-naive adults with HIV-1 infection (SPRING-2 study): 96 week results from a randomised, double-blind, non-inferiority trial. Lancet Infect Dis 13: 927–935 [CrossRef] [PubMed].
    [Google Scholar]
  35. Réty S. , Reaeábková L. , Dubanchet B. , Silhán J. , Legrand P. , Lewit-Bentley A. . ( 2010;). Structural studies of the catalytic core of the primate foamy virus (PFV-1) integrase. Acta Crystallogr Sect F Struct Biol Cryst Commun 66: 881–886 [CrossRef] [PubMed].
    [Google Scholar]
  36. Serrao E. , Odde S. , Ramkumar K. , Neamati N. . ( 2009;). Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors. Retrovirology 6: 25 [CrossRef] [PubMed].
    [Google Scholar]
  37. Stephan O. , Schwendemann J. , Specke V. , Tacke S.J. , Boller K. , Denner J. . ( 2001;). Porcine endogenous retroviruses (PERVs): generation of specific antibodies, development of an immunoperoxidase assay (IPA) and inhibition by AZT. Xenotransplantation 8: 310–316 [CrossRef] [PubMed].
    [Google Scholar]
  38. Trabaud M.A. , Cotte L. , Saison J. , Ramière C. , Ronfort C. , Venet F. , Tardy J.C. , Monneret G. , André P. . ( 2015;). Persistent production of an integrase-deleted HIV-1 variant with no resistance mutation and wild-type proviral DNA in a treated patient. AIDS Res Hum Retroviruses 31: 142–149 [CrossRef] [PubMed].
    [Google Scholar]
  39. Trobridge G.D. , Miller D.G. , Jacobs M.A. , Allen J.M. , Kiem H.P. , Kaul R. , Russell D.W. . ( 2006;). Foamy virus vector integration sites in normal human cells. Proc Natl Acad Sci U S A 103: 1498–1503 [CrossRef] [PubMed].
    [Google Scholar]
  40. Vagin A.A. , Steiner R.A. , Lebedev A.A. , Potterton L. , McNicholas S. , Long F. , Murshudov G.N. . ( 2004;). refmac5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr 60: 2184–2195 [CrossRef] [PubMed].
    [Google Scholar]
  41. Wilhelm M. , Fishman J.A. , Pontikis R. , Aubertin A.M. , Wilhelm F.X. . ( 2002;). Susceptibility of recombinant porcine endogenous retrovirus reverse transcriptase to nucleoside and non-nucleoside inhibitors. Cell Mol Life Sci 59: 2184–2190 [CrossRef] [PubMed].
    [Google Scholar]
  42. Wood A. , Webb B.L. , Bartosch B. , Schaller T. , Takeuchi Y. , Towers G.J. . ( 2009;). Porcine endogenous retroviruses PERV A and A/C recombinant are insensitive to a range of divergent mammalian TRIM5alpha proteins including human TRIM5alpha. J Gen Virol 90: 702–709 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yang F. , Leon O. , Greenfield N.J. , Roth M.J. . ( 1999;). Functional interactions of the HHCC domain of moloney murine leukemia virus integrase revealed by nonoverlapping complementation and zinc-dependent dimerization. J Virol 73: 1809–1817.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000236
Loading
/content/journal/jgv/10.1099/jgv.0.000236
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error