1887

Abstract

West Nile virus (WNV) occurs as a population of genetic variants (quasispecies) infecting a single animal. Previous low-resolution viral genetic diversity estimates in sampled wild birds and mosquitoes, and in multiple-passage adaptation studies or in cell culture, suggest that WNV genetic diversification is mostly limited to the mosquito vector. This study investigated genetic diversification of WNV in avian hosts during a single passage using next-generation sequencing. Wild-captured carrion crows were subcutaneously infected using a clonal Middle-East WNV. Blood samples were collected 2 and 4 days post-infection. A reverse-transcription (RT)-PCR approach was used to amplify the WNV genome directly from serum samples prior to next-generation sequencing resulting in an average depth of at least 700 ×  in each sample. Appropriate controls were sequenced to discriminate biologically relevant low-frequency variants from experimentally introduced errors. The WNV populations in the wild crows showed significant diversification away from the inoculum virus quasispecies structure. By contrast, WNV populations in intracerebrally infected day-old chickens did not diversify from that of the inoculum. Where previous studies concluded that WNV genetic diversification is only experimentally demonstrated in its permissive insect vector species, we have experimentally shown significant diversification of WNV populations in a wild bird reservoir species.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000231
2015-10-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/10/2999.html?itemId=/content/journal/jgv/10.1099/jgv.0.000231&mimeType=html&fmt=ahah

References

  1. Anthony K.G. , Bai F. , Krishnan M.N. , Fikrig E. , Koski R.A. . ( 2009;). Effective siRNA targeting of the 3′ untranslated region of the West Nile virus genome. Antiviral Res 82: 166–168 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bahuon C. , Desprès P. , Pardigon N. , Panthier J.J. , Cordonnier N. , Lowenski S. , Richardson J. , Zientara S. , Lecollinet S. . ( 2012;). IS-98-ST1 West Nile virus derived from an infectious cDNA clone retains neuroinvasiveness and neurovirulence properties of the original virus. PLoS One 7: e47666 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barzon L. , Lavezzo E. , Militello V. , Toppo S. , Palù G. . ( 2011;). Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci 12: 7861–7884 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brackney D.E. , Beane J.E. , Ebel G.D. . ( 2009;). RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog 5: e1000502 [CrossRef] [PubMed].
    [Google Scholar]
  5. Brinton M.A. . ( 2014;). Replication cycle and molecular biology of the West Nile virus. Viruses 6: 13–53 [CrossRef] [PubMed].
    [Google Scholar]
  6. Brinton M.A. , Dispoto J.H. . ( 1988;). Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. Virology 162: 290–299 [CrossRef] [PubMed].
    [Google Scholar]
  7. Brinton M.A. , Fernandez A.V. , Dispoto J.H. . ( 1986;). The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153: 113–121 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bunnik E.M. , Pisas L. , van Nuenen A.C. , Schuitemaker H. . ( 2008;). Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol 82: 7932–7941 [CrossRef] [PubMed].
    [Google Scholar]
  9. Campbell C.L. , Keene K.M. , Brackney D.E. , Olson K.E. , Blair C.D. , Wilusz J. , Foy B.D. . ( 2008;). Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol 8: 47 [CrossRef] [PubMed].
    [Google Scholar]
  10. Coia G. , Parker M.D. , Speight G. , Byrne M.E. , Westaway E.G. . ( 1988;). Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specified proteins. J Gen Virol 69: 1–21 [CrossRef] [PubMed].
    [Google Scholar]
  11. Deardorff E.R. , Fitzpatrick K.A. , Jerzak G.V.S. , Shi P.Y. , Kramer L.D. , Ebel G.D. . ( 2011;). West Nile virus experimental evolution in vivo and the trade-off hypothesis. PLoS Pathog 7: e1002335 [CrossRef] [PubMed].
    [Google Scholar]
  12. Deas T.S. , Binduga-Gajewska I. , Tilgner M. , Ren P. , Stein D.A. , Moulton H.M. , Iversen P.L. , Kauffman E.B. , Kramer L.D. , Shi P.-Y. . ( 2005;). Inhibition of flavivirus infections by antisense oligomers specifically suppressing viral translation and RNA replication. J Virol 79: 4599–4609 [CrossRef] [PubMed].
    [Google Scholar]
  13. Deas T.S. , Bennett C.J. , Jones S.A. , Tilgner M. , Ren P. , Behr M.J. , Stein D.A. , Iversen P.L. , Kramer L.D. , other authors . ( 2007;). In vitro resistance selection and in vivo efficacy of morpholino oligomers against West Nile virus. Antimicrob Agents Chemother 51: 2470–2482 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dridi M. , Rauw F. , Muylkens B. , Lecollinet S. , van den Berg T. , Lambrecht B. . ( 2013;). Setting up a SPF chicken model for the pathotyping of West Nile virus (WNV) strains. Transbound Emerg Dis 60: (Suppl. 2), 51–62 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ebel G.D. , Fitzpatrick K.A. , Lim P.-Y. , Bennett C.J. , Deardorff E.R. , Jerzak G.V.S. , Kramer L.D. , Zhou Y. , Shi P.-Y. , Bernard K.A. . ( 2011;). Nonconsensus West Nile virus genomes arising during mosquito infection suppress pathogenesis and modulate virus fitness in vivo. J Virol 85: 12605–12613 [CrossRef] [PubMed].
    [Google Scholar]
  16. Eigen M. , Schuster P. . ( 1978;). The Hypercycle. Naturwissenschaften 65: 7–41 [CrossRef].
    [Google Scholar]
  17. Elghonemy S. , Davis W.G. , Brinton M.A. . ( 2005;). The majority of the nucleotides in the top loop of the genomic 3′ terminal stem loop structure are cis-acting in a West Nile virus infectious clone. Virology 331: 238–246 [CrossRef] [PubMed].
    [Google Scholar]
  18. Grubaugh N.D. , Smith D.R. , Brackney D.E. , Bosco-Lauth A.M. , Fauver J.R. , Campbell C.L. , Felix T.A. , Romo H. , Duggal N.K. , other authors . ( 2015;). Experimental evolution of an RNA virus in wild birds: evidence for host-dependent impacts on population structure and competitive fitness. PLoS Pathog 11: e1004874 [PubMed].[CrossRef]
    [Google Scholar]
  19. Henn M.R. , Boutwell C.L. , Charlebois P. , Lennon N.J. , Power K.A. , Macalalad A.R. , Berlin A.M. , Malboeuf C.M. , Ryan E.M. , other authors . ( 2012;). Whole genome deep sequencing of HIV-1 reveals the impact of early minor variants upon immune recognition during acute infection. PLoS Pathog 8: e1002529 [CrossRef] [PubMed].
    [Google Scholar]
  20. Holland J. , Spindler K. , Horodyski F. , Grabau E. , Nichol S. , VandePol S. . ( 1982;). Rapid evolution of RNA genomes. Science 215: 1577–1585 [CrossRef] [PubMed].
    [Google Scholar]
  21. Hubálek Z. , Halouzka J. . ( 1999;). West Nile fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5: 643–650 [PubMed].[CrossRef]
    [Google Scholar]
  22. Jerzak G. , Bernard K.A. , Kramer L.D. , Ebel G.D. . ( 2005;). Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J Gen Virol 86: 2175–2183 [CrossRef] [PubMed].
    [Google Scholar]
  23. Jerzak G.V.S. , Bernard K. , Kramer L.D. , Shi P.Y. , Ebel G.D. . ( 2007;). The West Nile virus mutant spectrum is host-dependant and a determinant of mortality in mice. Virology 360: 469–476 [CrossRef] [PubMed].
    [Google Scholar]
  24. Jerzak G.V.S. , Brown I. , Shi P.Y. , Kramer L.D. , Ebel G.D. . ( 2008;). Genetic diversity and purifying selection in West Nile virus populations are maintained during host switching. Virology 374: 256–260 [CrossRef] [PubMed].
    [Google Scholar]
  25. Joshi N.A. , Fass J.N. . ( 2011;). Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33). Available at https://github.com/najoshi/sickle .
  26. Komar N. , Langevin S. , Hinten S. , Nemeth N. , Edwards E. , Hettler D. , Davis B. , Bowen R. , Bunning M. . ( 2003;). Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311–322 [CrossRef] [PubMed].
    [Google Scholar]
  27. Li X.-F. , Jiang T. , Yu X.-D. , Deng Y.-Q. , Zhao H. , Zhu Q.-Y. , Qin E.-D. , Qin C.-F. . ( 2010;). RNA elements within the 5′ untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication. J Gen Virol 91: 1218–1223 [CrossRef] [PubMed].
    [Google Scholar]
  28. Manzin A. , Solforosi L. , Petrelli E. , Macarri G. , Tosone G. , Piazza M. , Clementi M. . ( 1998;). Evolution of hypervariable region 1 of hepatitis C virus in primary infection. J Virol 72: 6271–6276 [PubMed].
    [Google Scholar]
  29. Murray K.O. , Mertens E. , Desprès P. . ( 2010;). West Nile virus and its emergence in the United States of America. Vet Res 41: 67 [CrossRef] [PubMed].
    [Google Scholar]
  30. Myles K.M. , Wiley M.R. , Morazzani E.M. , Adelman Z.N. . ( 2008;). Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc Natl Acad Sci U S A 105: 19938–19943 [CrossRef] [PubMed].
    [Google Scholar]
  31. Pfeffer M. , Dobler G. . ( 2010;). Emergence of zoonotic arboviruses by animal trade and migration. Parasit Vectors 3: 35 [CrossRef] [PubMed].
    [Google Scholar]
  32. Phipps L.P. , Gough R.E. , Ceeraz V. , Cox W.J. , Brown I.H. . ( 2007;). Detection of West Nile virus in the tissues of specific pathogen free chickens and serological response to laboratory infection: a comparative study. Avian Pathol 36: 301–305 [CrossRef] [PubMed].
    [Google Scholar]
  33. R Core Team ( 2014;). R: A language and environment for statistical computing. R Found Stat Comput Vienna, Austria http://www.R-project.org/.
    [Google Scholar]
  34. Senne D.A. , Pedersen J.C. , Hutto D.L. , Taylor W.D. , Schmitt B.J. , Panigrahy B. . ( 2000;). Pathogenicity of West Nile virus in chickens. Avian Dis 44: 642–649 [CrossRef] [PubMed].
    [Google Scholar]
  35. Shirafuji H. , Kanehira K. , Kubo M. , Shibahara T. , Kamio T. . ( 2009;). Experimental West Nile virus infection in Aigamo ducks, a cross between wild ducks (Anas platyrhynchos) and domestic ducks (Anas platyrhynchos var. domesticus). Avian Dis 53: 239–244 [CrossRef] [PubMed].
    [Google Scholar]
  36. Smits J.E.G. , Bortolotti G.R. . ( 2008;). Immunological development in nestling American kestrels Falco sparverius: post-hatching ontogeny of the antibody response. Comp Biochem Physiol A Mol Integr Physiol 151: 711–716 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tang Y. , Liu B. , Hapip C.A. , Xu D. , Fang C.T. . ( 2008;). Genetic analysis of West Nile virus isolates from US blood donors during 2002-2005. J Clin Virol 43: 292–297 [CrossRef] [PubMed].
    [Google Scholar]
  38. Totani M. , Yoshii K. , Kariwa H. , Takashima I. . ( 2011;). Glycosylation of the envelope protein of West Nile virus affects its replication in chicks. Avian Dis 55: 561–568.[CrossRef]
    [Google Scholar]
  39. Turell M.J. , O'Guinn M.L. , Jones J.W. , Sardelis M.R. , Dohm D.J. , Watts D.M. , Fernandez R. , Travassos da Rosa A. , Guzman H. , other authors . ( 2005;). Isolation of viruses from mosquitoes (Diptera: Culicidae) collected in the Amazon Basin region of Peru. J Med Entomol 42: 891–898 [CrossRef] [PubMed].
    [Google Scholar]
  40. Van Borm S. , Belák S. , Freimanis G. , Fusaro A. , Granberg F. , Höper D. , King D.P. , Monne I. , Orton R. , Rosseel T. . ( 2015;). Next-generation sequencing in veterinary medicine: how can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases?. Methods Mol Biol 1247: 415–436 [CrossRef] [PubMed].
    [Google Scholar]
  41. Van der Meulen K.M. , Pensaert M.B. , Nauwynck H.J. . ( 2005;). West Nile virus in the vertebrate world. Arch Virol 150: 637–657 [CrossRef] [PubMed].
    [Google Scholar]
  42. Van Slyke G.A. , Ciota A.T. , Willsey G.G. , Jaeger J. , Shi P.Y. , Kramer L.D. . ( 2012;). Point mutations in the West Nile virus (Flaviviridae, Flavivirus) RNA-dependent RNA polymerase alter viral fitness in a host-dependent manner in vitro and in vivo . Virology 427: 18–24 [CrossRef] [PubMed].
    [Google Scholar]
  43. Vignuzzi M. , Stone J.K. , Arnold J.J. , Cameron C.E. , Andino R. . ( 2006;). Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439: 344–348 [CrossRef] [PubMed].
    [Google Scholar]
  44. Villarreal L.P. , Witzany G. . ( 2013;). Rethinking quasispecies theory: from fittest type to cooperative consortia. World J Biol Chem 4: 79–90 [PubMed].
    [Google Scholar]
  45. Westerdahl H. , Wittzell H. , von Schantz T. , Bensch S. . ( 2004;). MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity (Edinb) 92: 534–542 [CrossRef] [PubMed].
    [Google Scholar]
  46. Wheeler S.S. , Barker C.M. , Fang Y. , Armijos M.V. , Carroll B.D. , Husted S. , Johnson W.O. , Reisen W.K. . ( 2009;). Differential impact of West Nile virus on California birds. Condor 111: 1–20 [CrossRef] [PubMed].
    [Google Scholar]
  47. Wilm A. , Aw P.P.K. , Bertrand D. , Yeo G.H.T. , Ong S.H. , Wong C.H. , Khor C.C. , Petric R. , Hibberd M.L. , Nagarajan N. . ( 2012;). LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 40: 11189–11201 [CrossRef] [PubMed].
    [Google Scholar]
  48. Yang X. , Charlebois P. , Macalalad A. , Henn M.R. , Zody M.C. . ( 2013;). V-Phaser 2: variant inference for viral populations. BMC Genomics 14: 674 [CrossRef] [PubMed].
    [Google Scholar]
  49. Yu L. , Markoff L. . ( 2005;). The topology of bulges in the long stem of the flavivirus 3′ stem-loop is a major determinant of RNA replication competence. J Virol 79: 2309–2324 [CrossRef] [PubMed].
    [Google Scholar]
  50. Zhang Q. , Hill G.E. , Edwards S.V. , Backström N. . ( 2014;). A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines. BMC Genomics 15: 305 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000231
Loading
/content/journal/jgv/10.1099/jgv.0.000231
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error