KU80, a key factor for non-homologous end-joining, retards geminivirus multiplication Free

Abstract

KU80 is well-known as a key component of the non-homologous end-joining pathway used to repair DNA double-strand breaks. In addition, the KU80-containing DNA-dependent protein kinase complex in mammals can act as a cytoplasmic sensor for viral DNA to activate innate immune response. We have now, to our knowledge for the first time, demonstrated that the speed of a systemic infection with a plant DNA geminivirus in is KU80-dependent. The early emergence of Euphorbia yellow mosaic virus DNA was significantly increased in knockout mutants compared with wild-type sibling controls. The possible impact of KU80 on geminivirus multiplication by generating non-productive viral DNAs or its role as a pattern-recognition receptor against DNA virus infection is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000224
2015-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2913.html?itemId=/content/journal/jgv/10.1099/jgv.0.000224&mimeType=html&fmt=ahah

References

  1. Ascencio-Ibáñez J.T., Sozzani R., Lee T.J., Chu T.M., Wolfinger R.D., Cella R., Hanley-Bowdoin L. 2008; Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454 [View Article][PubMed]
    [Google Scholar]
  2. Ferguson B.J., Mansur D.S., Peters N.E., Ren H., Smith G.L. 2012; DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 1:e00047 [View Article][PubMed]
    [Google Scholar]
  3. Gallego M.E., Bleuyard J.Y., Daoudal-Cotterell S., Jallut N., White C.I. 2003a; Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis . Plant J 35:557–565 [View Article][PubMed]
    [Google Scholar]
  4. Gallego M.E., Jalut N., White C.I. 2003b; Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis . Plant Cell 15:782–789 [View Article][PubMed]
    [Google Scholar]
  5. Glazov E., Phillips K., Budziszewski G.J., Meins F. Jr, Levin J.Z. 2003; A gene encoding an RNase D exonuclease-like protein is required for post-transcriptional silencing in Arabidopsis . Plant J 35:342–349 [View Article][PubMed]
    [Google Scholar]
  6. Grundy G.J., Moulding H.A., Caldecott K.W., Rulten S.L. 2014; One ring to bring them all—the role of Ku in mammalian non-homologous end joining. DNA Repair (Amst) 17:30–38 [View Article][PubMed]
    [Google Scholar]
  7. Hanley-Bowdoin L., Bejarano E.R., Robertson D., Mansoor S. 2013; Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777–788 [View Article][PubMed]
    [Google Scholar]
  8. Hartung F., Puchta H. 2006; The RecQ gene family in plants. J Plant Physiol 163:287–296 [View Article][PubMed]
    [Google Scholar]
  9. Hartung F., Plchová H., Puchta H. 2000; Molecular characterisation of RecQ homologues in Arabidopsis thaliana . Nucleic Acids Res 28:4275–4282 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Hipp K., Rau P., Schäfer B., Gronenborn B., Jeske H. 2014; The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants. Virology 462-463:189–198 [View Article][PubMed]
    [Google Scholar]
  11. Jeske H. 2007; Replication of geminiviruses and the use of rolling circle amplification for their diagnosis. In Tomato yellow leaf curl virus disease pp. 141–156 Edited by Czosnek H. Dordrecht: Springer; [View Article]
    [Google Scholar]
  12. Jeske H. 2009; Geminiviruses. In Torque Teno Virus: The Still Elusive Human Pathogens pp. 185–226 Edited by zur Hausen H., de Villiers E.-M. Berlin: Springer;
    [Google Scholar]
  13. Jeske H., Lütgemeier M., Preiss W. 2001; DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J 20:6158–6167 [View Article][PubMed]
    [Google Scholar]
  14. Ketting R.F., Haverkamp T.H., van Luenen H.G., Plasterk R.H. 1999; Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133–141 [View Article][PubMed]
    [Google Scholar]
  15. Kittelmann K., Rau P., Gronenborn B., Jeske H. 2009; Plant geminivirus Rep protein induces rereplication in fission yeast. J Virol 83:6769–6778 [View Article][PubMed]
    [Google Scholar]
  16. Knoll A., Puchta H. 2011; The role of DNA helicases and their interaction partners in genome stability and meiotic recombination in plants. J Exp Bot 62:1565–1579 [View Article][PubMed]
    [Google Scholar]
  17. Kobbe D., Blanck S., Demand K., Focke M., Puchta H. 2008; AtRECQ2, a RecQ helicase homologue from Arabidopsis thaliana, is able to disrupt various recombinogenic DNA structures in vitro . Plant J 55:397–405 [View Article][PubMed]
    [Google Scholar]
  18. Li B., Conway N., Navarro S., Comai L., Comai L. 2005; A conserved and species-specific functional interaction between the Werner syndrome-like exonuclease atWEX and the Ku heterodimer in Arabidopsis . Nucleic Acids Res 33:6861–6867 [View Article][PubMed]
    [Google Scholar]
  19. Mannuss A., Trapp O., Puchta H. 2012; Gene regulation in response to DNA damage. Biochim Biophys Acta 1819:154–165 [View Article][PubMed]
    [Google Scholar]
  20. Nagar S., Hanley-Bowdoin L., Robertson D. 2002; Host DNA replication is induced by geminivirus infection of differentiated plant cells. Plant Cell 14:2995–3007 [View Article][PubMed]
    [Google Scholar]
  21. Paprotka T., Deuschle K., Pilartz M., Jeske H. 2015; Form follows function in geminiviral minichromosome architecture. Virus Res 196:44–55 [View Article][PubMed]
    [Google Scholar]
  22. Plchova H., Hartung F., Puchta H. 2003; Biochemical characterization of an exonuclease from Arabidopsis thaliana reveals similarities to the DNA exonuclease of the human Werner syndrome protein. J Biol Chem 278:44128–44138 [View Article][PubMed]
    [Google Scholar]
  23. Preiss W., Jeske H. 2003; Multitasking in replication is common among geminiviruses. J Virol 77:2972–2980 [View Article][PubMed]
    [Google Scholar]
  24. Puchta H. 2005; The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14[PubMed] [CrossRef]
    [Google Scholar]
  25. Richter K.S., Kleinow T., Jeske H. 2014; Somatic homologous recombination in plants is promoted by a geminivirus in a tissue-selective manner. Virology 452-453:287–296 [View Article][PubMed]
    [Google Scholar]
  26. Richter K.S., Ende L., Jeske H. 2015; Rad54 is not essential for any geminiviral replication mode in planta . Plant Mol Biol 87:193–202 [View Article][PubMed]
    [Google Scholar]
  27. Szittya G., Burgyán J. 2013; RNA interference-mediated intrinsic antiviral immunity in plants. Curr Top Microbiol Immunol 371:153–181[PubMed]
    [Google Scholar]
  28. Tamura K., Adachi Y., Chiba K., Oguchi K., Takahashi H. 2002; Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J 29:771–781 [View Article][PubMed]
    [Google Scholar]
  29. Tops B.B., Tabara H., Sijen T., Simmer F., Mello C.C., Plasterk R.H., Ketting R.F. 2005; RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans . Nucleic Acids Res 33:347–355 [View Article][PubMed]
    [Google Scholar]
  30. Trinks D., Rajeswaran R., Shivaprasad P.V., Akbergenov R., Oakeley E.J., Veluthambi K., Hohn T., Pooggin M.M. 2005; Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527 [View Article][PubMed]
    [Google Scholar]
  31. West C.E., Waterworth W.M., Story G.W., Sunderland P.A., Jiang Q., Bray C.M. 2002; Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo . Plant J 31:517–528 [View Article][PubMed]
    [Google Scholar]
  32. Zellinger B., Akimcheva S., Puizina J., Schirato M., Riha K. 2007; Ku suppresses formation of telomeric circles and alternative telomere lengthening in Arabidopsis . Mol Cell 27:163–169 [View Article][PubMed]
    [Google Scholar]
  33. Zipfel C. 2014; Plant pattern-recognition receptors. Trends Immunol 35:345–351 [View Article][PubMed]
    [Google Scholar]
  34. Zvereva A.S., Pooggin M.M. 2012; Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4:2578–2597 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000224
Loading
/content/journal/jgv/10.1099/jgv.0.000224
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed