HCV upregulates Bim through the ROS/JNK signalling pathway, leading to Bax-mediated apoptosis Free

Abstract

We previously reported that hepatitis C virus (HCV) infection induces Bax-triggered, mitochondrion-mediated apoptosis by using the HCV J6/JFH1 strain and Huh-7.5 cells. However, it was still unclear how HCV-induced Bax activation. In this study, we showed that the HCV-induced activation and mitochondrial accumulation of Bax were significantly attenuated by treatment with a general antioxidant, -acetyl cysteine (NAC), or a specific c-Jun N-terminal kinase (JNK) inhibitor, SP600125, with the result suggesting that the reactive oxygen species (ROS)/JNK signalling pathway is upstream of Bax activation in HCV-induced apoptosis. We also demonstrated that HCV infection transcriptionally activated the gene for the pro-apoptotic protein Bim and the protein expression of three major splice variants of Bim (Bim, Bim and Bim). The HCV-induced increase in the Bim mRNA and protein levels was significantly counteracted by treatment with NAC or SP600125, suggesting that the ROS/JNK signalling pathway is involved in Bim upregulation. Moreover, HCV infection led to a marked accumulation of Bim on the mitochondria to facilitate its interaction with Bax. On the other hand, downregulation of Bim by siRNA (small interfering RNA) significantly prevented HCV-mediated activation of Bax and caspase 3. Taken together, these observations suggest that HCV-induced ROS/JNK signalling transcriptionally activates Bim expression, which leads to Bax activation and apoptosis induction.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000221
2015-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/9/2670.html?itemId=/content/journal/jgv/10.1099/jgv.0.000221&mimeType=html&fmt=ahah

References

  1. Bantel H., Schulze-Osthoff K. 2003; Apoptosis in hepatitis C virus infection. Cell Death Differ 10:(Suppl. 1)S48–S58 [View Article][PubMed]
    [Google Scholar]
  2. Blight K.J., McKeating J.A., Rice C.M. 2002; Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001–13014 [View Article][PubMed]
    [Google Scholar]
  3. Buccellato L.J., Tso M., Akinci O.I., Chandel N.S., Budinger G.R. 2004; Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J Biol Chem 279:6753–6760 [View Article][PubMed]
    [Google Scholar]
  4. Bumpus N.N. 2011; Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and BimEL-dependent mechanism in primary human hepatocytes. Toxicol Appl Pharmacol 257:227–234 [View Article][PubMed]
    [Google Scholar]
  5. Bungyoku Y., Shoji I., Makine T., Adachi T., Hayashida K., Nagano-Fujii M., Ide Y.H., Deng L., Hotta H. 2009; Efficient production of infectious hepatitis C virus with adaptive mutations in cultured hepatoma cells. J Gen Virol 90:1681–1691 [View Article][PubMed]
    [Google Scholar]
  6. Byun J.Y., Kim M.J., Eum D.Y., Yoon C.H., Seo W.D., Park K.H., Hyun J.W., Lee Y.S., Lee J.S., other authors. 2009; Reactive oxygen species-dependent activation of Bax and poly(ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol Pharmacol 76:734–744 [View Article][PubMed]
    [Google Scholar]
  7. Calabrese F., Pontisso P., Pettenazzo E., Benvegnù L., Vario A., Chemello L., Alberti A., Valente M. 2000; Liver cell apoptosis in chronic hepatitis C correlates with histological but not biochemical activity or serum HCV-RNA levels. Hepatology 31:1153–1159 [View Article][PubMed]
    [Google Scholar]
  8. Chiou H.L., Hsieh Y.S., Hsieh M.R., Chen T.Y. 2006; HCV E2 may induce apoptosis of Huh-7 cells via a mitochondrial-related caspase pathway. Biochem Biophys Res Commun 345:453–458 [View Article][PubMed]
    [Google Scholar]
  9. Czabotar P.E., Colman P.M., Huang D.C. 2009; Bax activation by Bim?. Cell Death Differ 16:1187–1191 [View Article][PubMed]
    [Google Scholar]
  10. D'Alessio M., De Nicola M., Coppola S., Gualandi G., Pugliese L., Cerella C., Cristofanon S., Civitareale P., Ciriolo M.R., other authors. 2005; Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J 19:1504–1506[PubMed]
    [Google Scholar]
  11. Deng L., Nagano-Fujii M., Tanaka M., Nomura-Takigawa Y., Ikeda M., Kato N., Sada K., Hotta H. 2006; NS3 protein of hepatitis C virus associates with the tumour suppressor p53 and inhibits its function in an NS3 sequence-dependent manner. J Gen Virol 87:1703–1713 [View Article][PubMed]
    [Google Scholar]
  12. Deng L., Adachi T., Kitayama K., Bungyoku Y., Kitazawa S., Ishido S., Shoji I., Hotta H. 2008; Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway. J Virol 82:10375–10385 [View Article][PubMed]
    [Google Scholar]
  13. Deng L., Shoji I., Ogawa W., Kaneda S., Soga T., Jiang D.P., Ide Y.H., Hotta H. 2011; Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol 85:8556–8568 [View Article][PubMed]
    [Google Scholar]
  14. Essafi A., Fernández de Mattos S., Hassen Y.A., Soeiro I., Mufti G.J., Thomas N.S., Medema R.H., Lam E.W. 2005; Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 24:2317–2329 [View Article][PubMed]
    [Google Scholar]
  15. Fabregat I., Roncero C., Fernández M. 2007; Survival and apoptosis: a dysregulated balance in liver cancer. Liver Int 27:155–162 [View Article][PubMed]
    [Google Scholar]
  16. Gao M., Nettles R.E., Belema M., Snyder L.B., Nguyen V.N., Fridell R.A., Serrano-Wu M.H., Langley D.R., Sun J.H., other authors. 2010; Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465:96–100 [View Article][PubMed]
    [Google Scholar]
  17. Gavathiotis E., Suzuki M., Davis M.L., Pitter K., Bird G.H., Katz S.G., Tu H.C., Kim H., Cheng E.H., other authors. 2008; BAX activation is initiated at a novel interaction site. Nature 455:1076–1081 [View Article][PubMed]
    [Google Scholar]
  18. Gilley J., Coffer P.J., Ham J. 2003; FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162:613–622 [View Article][PubMed]
    [Google Scholar]
  19. Guicciardi M.E., Gores G.J. 2005; Apoptosis: a mechanism of acute and chronic liver injury. Gut 54:1024–1033 [View Article][PubMed]
    [Google Scholar]
  20. Heidari N., Miller A.V., Hicks M.A., Marking C.B., Harada H. 2012; Glucocorticoid-mediated BIM induction and apoptosis are regulated by Runx2 and c-Jun in leukemia cells. Cell Death Dis 3:e349 [View Article][PubMed]
    [Google Scholar]
  21. Hübner A., Barrett T., Flavell R.A., Davis R.J. 2008; Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol Cell 30:415–425 [View Article][PubMed]
    [Google Scholar]
  22. Inubushi S., Nagano-Fujii M., Kitayama K., Tanaka M., An C., Yokozaki H., Yamamura H., Nuriya H., Kohara M., other authors. 2008; Hepatitis C virus NS5A protein interacts with and negatively regulates the non-receptor protein tyrosine kinase Syk. J Gen Virol 89:1231–1242 [View Article][PubMed]
    [Google Scholar]
  23. Joyce M.A., Walters K.A., Lamb S.E., Yeh M.M., Zhu L.F., Kneteman N., Doyle J.S., Katze M.G., Tyrrell D.L. 2009; HCV induces oxidative and ER stress, and sensitizes infected cells to apoptosis in SCID/Alb-uPA mice. PLoS Pathog 5:e1000291 [View Article][PubMed]
    [Google Scholar]
  24. Kamata H., Honda S., Maeda S., Chang L., Hirata H., Karin M. 2005; Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661 [View Article][PubMed]
    [Google Scholar]
  25. Kasai D., Adachi T., Deng L., Nagano-Fujii M., Sada K., Ikeda M., Kato N., Ide Y.H., Shoji I., Hotta H. 2009; HCV replication suppresses cellular glucose uptake through down-regulation of cell surface expression of glucose transporters. J Hepatol 50:883–894 [View Article][PubMed]
    [Google Scholar]
  26. Kim B.J., Ryu S.W., Song B.J. 2006; JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem 281:21256–21265 [View Article][PubMed]
    [Google Scholar]
  27. Lalier L., Cartron P.F., Juin P., Nedelkina S., Manon S., Bechinger B., Vallette F.M. 2007; Bax activation and mitochondrial insertion during apoptosis. Apoptosis 12:887–896 [View Article][PubMed]
    [Google Scholar]
  28. Lee S.K., Park S.O., Joe C.O., Kim Y.S. 2007; Interaction of HCV core protein with 14-3-3ϵ protein releases Bax to activate apoptosis. Biochem Biophys Res Commun 352:756–762 [View Article][PubMed]
    [Google Scholar]
  29. Lei K., Davis R.J. 2003; JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A 100:2432–2437 [View Article][PubMed]
    [Google Scholar]
  30. Ley R., Ewings K.E., Hadfield K., Cook S.J. 2005; Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ 12:1008–1014 [View Article][PubMed]
    [Google Scholar]
  31. Lin W., Tsai W.L., Shao R.X., Wu G., Peng L.F., Barlow L.L., Chung W.J., Zhang L., Zhao H., other authors. 2010; Hepatitis C virus regulates transforming growth factor β1 production through the generation of reactive oxygen species in a nuclear factor κB-dependent manner. Gastroenterology 138:2509–2518 [CrossRef]
    [Google Scholar]
  32. Lindenbach B.D., Evans M.J., Syder A.J., Wölk B., Tellinghuisen T.L., Liu C.C., Maruyama T., Hynes R.O., Burton D.R., other authors. 2005; Complete replication of hepatitis C virus in cell culture. Science 309:623–626 [View Article][PubMed]
    [Google Scholar]
  33. Luciano F., Jacquel A., Colosetti P., Herrant M., Cagnol S., Pages G., Auberger P. 2003; Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 22:6785–6793 [View Article][PubMed]
    [Google Scholar]
  34. Mateu G., Donis R.O., Wakita T., Bukh J., Grakoui A. 2008; Intragenotypic JFH1 based recombinant hepatitis C virus produces high levels of infectious particles but causes increased cell death. Virology 376:397–407 [View Article][PubMed]
    [Google Scholar]
  35. Matsui H., Asou H., Inaba T. 2007; Cytokines direct the regulation of Bim mRNA stability by heat-shock cognate protein 70. Mol Cell 25:99–112 [View Article][PubMed]
    [Google Scholar]
  36. Matsui C., Sianipar I.R., Minami N., Deng L., Hotta H., Shoji I. 2015; A single-amino-acid mutation in hepatitis C virus NS5A disrupts physical and functional interaction with the transcription factor HNF-1α. J Gen Virol. 2015 May 8. pii: vir.0.000179. [View Article]
    [Google Scholar]
  37. Mengshol J.A., Golden-Mason L., Rosen H.R. 2007; Mechanisms of disease: HCV-induced liver injury. Nat Clin Pract Gastroenterol Hepatol 4:622–634 [View Article][PubMed]
    [Google Scholar]
  38. Mérino D., Giam M., Hughes P.D., Siggs O.M., Heger K., O'Reilly L.A., Adams J.M., Strasser A., Lee E.F., other authors. 2009; The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins. J Cell Biol 186:355–362 [View Article][PubMed]
    [Google Scholar]
  39. Nie C., Tian C., Zhao L., Petit P.X., Mehrpour M., Chen Q. 2008; Cysteine 62 of Bax is critical for its conformational activation and its proapoptotic activity in response to H2O2-induced apoptosis. J Biol Chem 283:15359–15369 [View Article][PubMed]
    [Google Scholar]
  40. Nomura-Takigawa Y., Nagano-Fujii M., Deng L., Kitazawa S., Ishido S., Sada K., Hotta H. 2006; Non-structural protein 4A of hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J Gen Virol 87:1935–1945 [View Article][PubMed]
    [Google Scholar]
  41. O'Connor L., Strasser A., O'Reilly L.A., Hausmann G., Adams J.M., Cory S., Huang D.C. 1998; Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17:384–395 [View Article][PubMed]
    [Google Scholar]
  42. Okuno S., Saito A., Hayashi T., Chan P.H. 2004; The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci 24:7879–7887 [View Article][PubMed]
    [Google Scholar]
  43. Oliver F.J., Menissier-de Murcia J., de Murcia G. 1999; Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am J Hum Genet 64:1282–1288 [View Article][PubMed]
    [Google Scholar]
  44. Putcha G.V., Le S., Frank S., Besirli C.G., Clark K., Chu B., Alix S., Youle R.J., LaMarche A., other authors. 2003; JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron 38:899–914 [View Article][PubMed]
    [Google Scholar]
  45. Seki E., Brenner D.A., Karin M. 2012; A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology 143:307–320 [View Article][PubMed]
    [Google Scholar]
  46. Shepard C.W., Finelli L., Alter M.J. 2005; Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5:558–567 [View Article][PubMed]
    [Google Scholar]
  47. Singh R., Wang Y., Schattenberg J.M., Xiang Y., Czaja M.J. 2009; Chronic oxidative stress sensitizes hepatocytes to death from 4-hydroxynonenal by JNK/c-Jun overactivation. Am J Physiol Gastrointest Liver Physiol 297:G907–G917 [View Article][PubMed]
    [Google Scholar]
  48. Strasser A., Cory S., Adams J.M. 2011; Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 30:3667–3683 [View Article][PubMed]
    [Google Scholar]
  49. Tait S.W., Green D.R. 2010; Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632 [View Article][PubMed]
    [Google Scholar]
  50. Tsuruta F., Sunayama J., Mori Y., Hattori S., Shimizu S., Tsujimoto Y., Yoshioka K., Masuyama N., Gotoh Y. 2004; JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23:1889–1899 [View Article][PubMed]
    [Google Scholar]
  51. Upton J.P., Valentijn A.J., Zhang L., Gilmore A.P. 2007; The N-terminal conformation of Bax regulates cell commitment to apoptosis. Cell Death Differ 14:932–942[PubMed]
    [Google Scholar]
  52. Vela L., Gonzalo O., Naval J., Marzo I. 2013; Direct interaction of Bax and Bak proteins with Bcl-2 homology domain 3 (BH3)-only proteins in living cells revealed by fluorescence complementation. J Biol Chem 288:4935–4946 [View Article][PubMed]
    [Google Scholar]
  53. Walters K.A., Syder A.J., Lederer S.L., Diamond D.L., Paeper B., Rice C.M., Katze M.G. 2009; Genomic analysis reveals a potential role for cell cycle perturbation in HCV-mediated apoptosis of cultured hepatocytes. PLoS Pathog 5:e1000269 [View Article][PubMed]
    [Google Scholar]
  54. Weber A., Paschen S.A., Heger K., Wilfling F., Frankenberg T., Bauerschmitt H., Seiffert B.M., Kirschnek S., Wagner H., Häcker G. 2007; BimS-induced apoptosis requires mitochondrial localization but not interaction with anti-apoptotic Bcl-2 proteins. J Cell Biol 177:625–636 [View Article][PubMed]
    [Google Scholar]
  55. Woodhouse S.D., Narayan R., Latham S., Lee S., Antrobus R., Gangadharan B., Luo S., Schroth G.P., Klenerman P., Zitzmann N. 2010; Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro . Hepatology 52:443–453 [View Article][PubMed]
    [Google Scholar]
  56. Yamane D., McGivern D.R., Wauthier E., Yi M., Madden V.J., Welsch C., Antes I., Wen Y., Chugh P.E., other authors. 2014; Regulation of the hepatitis C virus RNA replicase by endogenous lipid peroxidation. Nat Med 20:927–935 [View Article][PubMed]
    [Google Scholar]
  57. Zhu H., Dong H., Eksioglu E., Hemming A., Cao M., Crawford J.M., Nelson D.R., Liu C. 2007; Hepatitis C virus triggers apoptosis of a newly developed hepatoma cell line through antiviral defense system. Gastroenterology 133:1649–1659 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000221
Loading
/content/journal/jgv/10.1099/jgv.0.000221
Loading

Data & Media loading...

Most cited Most Cited RSS feed