1887

Abstract

As a member of the newly established family, grapevine rupestris stem pitting-associated virus (GRSPaV) has an RNA genome containing five ORFs. ORF1 encodes a putative replicase polyprotein typical of the alphavirus superfamily of positive-strand ssRNA viruses. Several viruses of this superfamily have been demonstrated to replicate in structures designated viral replication complexes associated with intracellular membranes. However, structure and cellular localization of the replicase complex have not been studied for members of , a family of mostly woody plant viruses. As a first step towards the elucidation of the replication complex of GRSPaV, we investigated the subcellular localization of full-length and truncated versions of its replicase polyprotein via fluorescent tagging, followed by fluorescence microscopy. We found that the replicase polyprotein formed distinctive punctate bodies in both leaf cells and tobacco protoplasts. We further mapped a region of 76 amino acids in the methyl-transferase domain responsible for the formation of these punctate structures. The punctate structures are distributed in close proximity to the endoplasmic reticulum network. Membrane flotation and biochemical analyses demonstrate that the N-terminal region responsible for punctate structure formation associated with cellular membrane is likely through an amphipathic α helix serving as an in-plane anchor. The identity of this membrane is yet to be determined. This is, to our knowledge, the first report on the localization and membrane association of the replicase proteins of a member of the family .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000019
2015-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/921.html?itemId=/content/journal/jgv/10.1099/jgv.0.000019&mimeType=html&fmt=ahah

References

  1. Ahlquist P., Noueiry A. O., Lee W. M., Kushner D. B., Dye B. T. 2003; Host factors in positive-strand RNA virus genome replication. J Virol 77:8181–8186 [View Article][PubMed]
    [Google Scholar]
  2. Bamunusinghe D., Hemenway C. L., Nelson R. S., Sanderfoot A. A., Ye C. M., Silva M. A. T., Payton M., Verchot-Lubicz J. 2009; Analysis of potato virus X replicase and TGBp3 subcellular locations. Virology 393:272–285 [View Article][PubMed]
    [Google Scholar]
  3. Bratlie M. S., Drabløs F. 2005; Bioinformatic mapping of AlkB homology domains in viruses. BMC Genomics 6:1 [View Article][PubMed]
    [Google Scholar]
  4. Buck K. W. 1996; Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251 [View Article][PubMed]
    [Google Scholar]
  5. Chen J., Ahlquist P. 2000; Brome mosaic virus polymerase-like protein 2a is directed to the endoplasmic reticulum by helicase-like viral protein 1a. J Virol 74:4310–4318 [View Article][PubMed]
    [Google Scholar]
  6. David C., Gargouri-Bouzid R., Haenni A. L. 1992; RNA replication of plant viruses containing an RNA genome. Prog Nucleic Acid Res Mol Biol 42:157–227 [View Article][PubMed]
    [Google Scholar]
  7. den Boon J. A., Chen J., Ahlquist P. 2001; Identification of sequences in brome mosaic virus replicase protein 1a that mediate association with endoplasmic reticulum membranes. J Virol 75:12370–12381 [View Article][PubMed]
    [Google Scholar]
  8. Ding X. S., Liu J. Z., Cheng N.-H., Folimonov A., Hou Y.-M., Bao Y. M., Katagi C., Cárter S. A., Nelson R. S. 2004; The Tobacco mosaic virus 126-kDa protein associated with virus replication and movement suppresses RNA silencing. Mol Plant Microbe Interact 17:583–592 [View Article][PubMed]
    [Google Scholar]
  9. dos Reis Figueira A., Golem S., Goregaoker S. P., Culver J. N. 2002; A nuclear localization signal and a membrane association domain contribute to the cellular localization of the Tobacco mosaic virus 126-kDa replicase protein. Virology 301:81–89 [View Article][PubMed]
    [Google Scholar]
  10. Eisenberg D., Weiss R. M., Terwilliger T. C. 1982; The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299:371–374 [View Article][PubMed]
    [Google Scholar]
  11. Froshauer S., Kartenbeck J., Helenius A. 1988; Alphavirus RNA replicase is located on the cytoplasmic surface of endosomes and lysosomes. J Cell Biol 107:2075–2086 [View Article][PubMed]
    [Google Scholar]
  12. Gautier R., Douguet D., Antonny B., Drin G. 2008; HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24:2101–2102 [View Article][PubMed]
    [Google Scholar]
  13. Jonczyk M., Pathak K. B., Sharma M., Nagy P. D. 2007; Exploiting alternative subcellular location for replication: tombusvirus replication switches to the endoplasmic reticulum in the absence of peroxisomes. Virology 362:320–330 [View Article][PubMed]
    [Google Scholar]
  14. Ju H.-J., Samuels T. D., Wang Y.-S., Blancaflor E., Payton M., Mitra R., Krishnamurthy K., Nelson R. S., Verchot-Lubicz J. 2005; The potato virus X TGBp2 movement protein associates with endoplasmic reticulum-derived vesicles during virus infection. Plant Physiol 138:1877–1895 [View Article][PubMed]
    [Google Scholar]
  15. Kawakami S., Watanabe Y., Beachy R. N. 2004; Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 101:6291–6296 [View Article][PubMed]
    [Google Scholar]
  16. King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. 2012 Virus Taxonomy: 9th Report of the International Committee on the Taxonomy of Viruses San Diego: Academic Press/Elsevier;
    [Google Scholar]
  17. Koonin E. V., Dolja V. V., Morris T. J. 1993; Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430 [View Article][PubMed]
    [Google Scholar]
  18. Kujala P., Ikäheimonen A., Ehsani N., Vihinen H., Auvinen P., Kääriäinen L. 2001; Biogenesis of the Semliki Forest virus RNA replication complex. J Virol 75:3873–3884 [View Article][PubMed]
    [Google Scholar]
  19. Lima M. F., Alkowni R., Uyemoto J. K., Golino D., Osman F., Rowhani A. 2006; Molecular analysis of a California strain of Rupestris stem pitting-associated virus isolated from declining Syrah grapevines. Arch Virol 151:1889–1894 [View Article][PubMed]
    [Google Scholar]
  20. Lima M. F., Alkowni R., Uyemoto J. K., Rowhani A. 2009; Genomic study and detection of a new variant of grapevine rupestris stem pitting associated virus in declining California Pinot noir grapevines. J Plant Pathol 91:155–162
    [Google Scholar]
  21. Liu L., Westler W. M., den Boon J. A., Wang X., Diaz A., Steinberg H. A., Ahlquist P. 2009; An amphipathic α-helix controls multiple roles of brome mosaic virus protein 1a in RNA replication complex assembly and function. PLoS Pathog 5:e1000351 [View Article][PubMed]
    [Google Scholar]
  22. Mackenzie J. 2005; Wrapping things up about virus RNA replication. Traffic 6:967–977 [View Article][PubMed]
    [Google Scholar]
  23. Mann K., Meng B. 2013; The triple gene block movement proteins of a grape virus in the genus Foveavirus confer limited cell-to-cell spread of a mutant Potato virus X. . Virus Genes 47:93–104 [View Article][PubMed]
    [Google Scholar]
  24. Martelli G. P. 1993 Rugose Wood Complex. Graft-transmissible Diseases of Grapevines: Handbook for Detection and Diagnosis Rome: Food and Agriculture Organization of the United Nations;
    [Google Scholar]
  25. Martelli G. P., Adams M. J., Kreuze J. F., Dolja V. V. 2007; Family Flexiviridae: a case study in virion and genome plasticity. Annu Rev Phytopathol 45:73–100 [View Article][PubMed]
    [Google Scholar]
  26. McCartney A. W., Greenwood J. S., Fabian M. R., White K. A., Mullen R. T. 2005; Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17:3513–3531 [View Article][PubMed]
    [Google Scholar]
  27. Meng B., Gonsalves D. 2007; Grapevine rupestris stem pitting-associated virus: a decade of research and future perspectives. Plant Viruses 1:52–62
    [Google Scholar]
  28. Meng B., Li C. 2010; The capsid protein of Grapevine rupestris stem pitting-associated virus contains a typical nuclear localization signal and targets to the nucleus. Virus Res 153:212–217 [View Article][PubMed]
    [Google Scholar]
  29. Meng B., Pang S. Z., Forsline P. L., McFerson J. R., Gonsalves D. 1998; Nucleotide sequence and genome structure of grapevine rupestris stem pitting associated virus-1 reveal similarities to apple stem pitting virus. J Gen Virol 79:2059–2069[PubMed]
    [Google Scholar]
  30. Meng B., Zhu H. Y., Gonsalves D. 1999; Rupestris stem pitting associated virus-1 consists of a family of sequence variants. Arch Virol 144:2071–2085 [View Article][PubMed]
    [Google Scholar]
  31. Meng B., Li C., Wang W., Goszczynski D., Gonsalves D. 2005; Complete genome sequences of two new variants of Grapevine rupestris stem pitting-associated virus and comparative analyses. J Gen Virol 86:1555–1560 [View Article][PubMed]
    [Google Scholar]
  32. Meng B., Rebelo A. R., Fisher H. 2006; Genetic diversity analyses of grapevine Rupestris stem pitting-associated virus reveal distinct population structures in scion versus rootstock varieties. J Gen Virol 87:1725–1733 [View Article][PubMed]
    [Google Scholar]
  33. Meng B., Venkataraman S., Li C., Wang W., Dayan-Glick C., Mawassi M. 2013; Construction and biological activities of the first infectious cDNA clones of the genus Foveavirus. . Virology 435:453–462 [View Article][PubMed]
    [Google Scholar]
  34. Morelli M., Minafra A., Boscia D., Martelli G. P. 2011; Complete nucleotide sequence of a new variant of grapevine rupestris stem pitting-associated virus from southern Italy. Arch Virol 156:543–546 [View Article][PubMed]
    [Google Scholar]
  35. Nagy P. D., Pogany J. 2008; Multiple roles of viral replication proteins in plant RNA virus replication. Methods Mol Biol 451:55–68 [View Article][PubMed]
    [Google Scholar]
  36. Navarro B., Rubino L., Russo M. 2004; Expression of the Cymbidium ringspot virus 33-kilodalton protein in Saccharomyces cerevisiae and molecular dissection of the peroxisomal targeting signal. J Virol 78:4744–4752 [View Article][PubMed]
    [Google Scholar]
  37. Navarro B., Russo M., Pantaleo V., Rubino L. 2006; Cytological analysis of Saccharomyces cerevisiae cells supporting cymbidium ringspot virus defective interfering RNA replication. J Gen Virol 87:705–714 [View Article][PubMed]
    [Google Scholar]
  38. Nolasco G., Santos C., Petrovic N., Teixeira Santos M., Cortez I., Fonseca F., Boben J., Nazaré Pereira A. M., Sequeira O. 2006; Rupestris stem pitting associated virus isolates are composed by mixtures of genomic variants which share a highly conserved coat protein. Arch Virol 151:83–96 [View Article][PubMed]
    [Google Scholar]
  39. Novoa R. R., Calderita G., Arranz R., Fontana J., Granzow H., Risco C. 2005; Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 97:147–172 [View Article][PubMed]
    [Google Scholar]
  40. Panavas T., Hawkins C. M., Panaviene Z., Nagy P. D. 2005; The role of the p33 : p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology 338:81–95 [View Article][PubMed]
    [Google Scholar]
  41. Prod’homme D., Le Panse S., Drugeon G., Jupin I. 2001; Detection and subcellular localization of the turnip yellow mosaic virus 66K replication protein in infected cells. Virology 281:88–101 [View Article][PubMed]
    [Google Scholar]
  42. Rebelo A. R., Niewiadomski S., Prosser S. W., Krell P., Meng B. 2008; Subcellular localization of the triple gene block proteins encoded by a foveavirus infecting grapevines. Virus Res 138:57–69 [View Article][PubMed]
    [Google Scholar]
  43. Restrepo M. A., Freed D. D., Carrington J. C. 1990; Nuclear transport of plant potyviral proteins. Plant Cell 2:987–998 [View Article][PubMed]
    [Google Scholar]
  44. Salonen A., Ahola T., Kääriäinen L. 2005; Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol 285:139–173[PubMed]
    [Google Scholar]
  45. Samuels T. D., Ju H. J., Ye C. M., Motes C. M., Blancaflor E. B., Verchot-Lubicz J. 2007; Subcellular targeting and interactions among the Potato virus X TGB proteins. Virology 367:375–389 [View Article][PubMed]
    [Google Scholar]
  46. Sanfaçon H., Zhang G. 2008; Analysis of interactions between viral replicase proteins and plant intracellular membranes. In Plant Virology Protocols: From Viral Sequence to Protein Function pp. 361–375 Edited by Foster G. D., Johansen I. E., Hong Y., Nagy P. D. New Jersey: Humana Press; [View Article]
    [Google Scholar]
  47. Sapay N., Guermeur Y., Deléage G. 2006; Prediction of amphipathic in-plane membrane anchors in monotopic proteins using a SVM classifier. BMC Bioinformatics 7:255 [View Article][PubMed]
    [Google Scholar]
  48. Saxena P., Hsieh Y. C., Alvarado V. Y., Sainsbury F., Saunders K., Lomonossoff G. P., Scholthof H. B. 2011; Improved foreign gene expression in plants using a virus-encoded suppressor of RNA silencing modified to be developmentally harmless. Plant Biotechnol J 9:703–712 [View Article][PubMed]
    [Google Scholar]
  49. Schaad M. C., Jensen P. E., Carrington J. C. 1997; Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–4059 [View Article][PubMed]
    [Google Scholar]
  50. Schwartz M., Chen J., Janda M., Sullivan M., den Boon J., Ahlquist P. 2002; A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514 [View Article][PubMed]
    [Google Scholar]
  51. Spuul P., Salonen A., Merits A., Jokitalo E., Kääriäinen L., Ahola T. 2007; Role of the amphipathic peptide of Semliki Forest virus replicase protein nsP1 in membrane association and virus replication. J Virol 81:872–883 [View Article][PubMed]
    [Google Scholar]
  52. Suhy D. A., Giddings T. H. Jr, Kirkegaard K. 2000; Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74:8953–8965 [View Article][PubMed]
    [Google Scholar]
  53. Sztuba-Solinska J., Bujarski J. J. 2008; Insights into the single-cell reproduction cycle of members of the family Bromoviridae: lessons from the use of protoplast systems. J Virol 82:10330–10340 [View Article][PubMed]
    [Google Scholar]
  54. Terlizzi F., Ratti C., Filippini G., Pisi A., Credi R. 2010; Detection and molecular characterization of Italian Grapevine rupestris stem pitting-associated virus isolates. Plant Pathol 59:48–58 [View Article]
    [Google Scholar]
  55. Terlizzi F., Li C., Ratti C., Qiu W., Credi R., Meng B. 2011; Detection of multiple sequence variants of Grapevine rupestris stem pitting-associated virus using primers targeting the polymerase domain and partial genome sequencing of a novel variant. Ann Appl Biol 159:478–490 [View Article]
    [Google Scholar]
  56. Van der Heijden M. W., Bol J. F. 2002; Composition of alphavirus-like replication complexes: involvement of virus and host encoded proteins. Arch Virol 147:875–898 [View Article][PubMed]
    [Google Scholar]
  57. Van der Heijden M. W., Carette J. E., Reinhoud P. J., Haegi A., Bol J. F. 2001; Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane. J Virol 75:1879–1887 [View Article][PubMed]
    [Google Scholar]
  58. Verchot-Lubicz J., Torrance L., Solovyev A. G., Morozov S. Y., Jackson A. O., Gilmer D. 2010; Varied movement strategies employed by triple gene block-encoding viruses. Mol Plant Microbe Interact 23:1231–1247 [View Article][PubMed]
    [Google Scholar]
  59. Voinnet O., Pinto Y. M., Baulcombe D. C. 1999; Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96:14147–14152 [View Article][PubMed]
    [Google Scholar]
  60. Waigmann E., Curin M., Heinlein M. 2007; Tobacco mosaic virus – a model for macromolecular cell-to-cell spread. Plant Cell Monographs 7:29–62 [View Article]
    [Google Scholar]
  61. Wei T., Wang A. 2008; Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J Virol 82:12252–12264 [View Article][PubMed]
    [Google Scholar]
  62. Wei T., Huang T. S., McNeil J., Laliberté J. F., Hong J., Nelson R. S., Wang A. 2010; Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. J Virol 84:799–809 [View Article][PubMed]
    [Google Scholar]
  63. Welsch S., Miller S., Romero-Brey I., Merz A., Bleck C. K. E., Walther P., Fuller S. D., Antony C., Krijnse-Locker J., Bartenschlager R. 2009; Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host & Microbe 5:365–375 [CrossRef]
    [Google Scholar]
  64. Xiao H., Siddiqua M., Braybrook S., Nassuth A. 2006; Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29:1410–1421 [View Article][PubMed]
    [Google Scholar]
  65. Yamanaka T., Ohta T., Takahashi M., Meshi T., Schmidt R., Dean C., Naito S., Ishikawa M. 2000; TOM1, an Arabidopsis gene required for efficient multiplication of a tobamovirus, encodes a putative transmembrane protein. Proc Natl Acad Sci U S A 97:10107–10112 [View Article][PubMed]
    [Google Scholar]
  66. Yamanaka T., Imai T., Satoh R., Kawashima A., Takahashi M., Tomita K., Kubota K., Meshi T., Naito S., Ishikawa M. 2002; Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J Virol 76:2491–2497 [View Article][PubMed]
    [Google Scholar]
  67. Zhang Y. P., Uyemoto J. K., Golino D. A., Rowhani A. 1998; Nucleotide sequence and RT-PCR detection of a virus associated with grapevine rupestris stem-pitting disease. Phytopathology 88:1231–1237 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000019
Loading
/content/journal/jgv/10.1099/jgv.0.000019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error