1887

Abstract

IFN-induced restriction factors can significantly affect the replicative capacity of retroviruses in mammals. TRIM5α (tripartite motif protein 5, isoform α) is a restriction factor that acts at early stages of the virus life cycle by intercepting and destabilizing incoming retroviral cores. Sensitivity to TRIM5α maps to the N-terminal domain of the retroviral capsid proteins. In several New World and Old World monkey species, independent events of retrotransposon-mediated insertion of the cyclophilin A (CypA)-coding sequence in the gene have given rise to TRIMCyp (also called TRIM5-CypA), a hybrid protein that is active against some lentiviruses in a species-specific fashion. In particular, TRIMCyp from the owl monkey (omkTRIMCyp) very efficiently inhibits human immunodeficiency virus type 1 (HIV-1). Previously, we showed that disrupting the integrity of microtubules (MTs) and of cytoplasmic dynein complexes partially rescued replication of retroviruses, including HIV-1, from restriction mediated by TRIM5α. Here, we showed that efficient restriction of HIV-1 by omkTRIMCyp was similarly dependent on the MT network and on dynein complexes, but in a context-dependent fashion. When omkTRIMCyp was expressed in human HeLa cells, restriction was partially counteracted by pharmacological agents targeting MTs or by small interfering RNA-mediated inhibition of dynein. The same drugs (nocodazole and paclitaxel) also rescued HIV-1 from restriction in cat CRFK cells, although to a lesser extent. Strikingly, neither nocodazole, paclitaxel nor depletion of the dynein heavy chain had a significant effect on the restriction of HIV-1 in an owl monkey cell line. These results suggested the existence of cell-specific functional interactions between MTs/dynein and TRIMCyp.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000018
2015-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/4/874.html?itemId=/content/journal/jgv/10.1099/jgv.0.000018&mimeType=html&fmt=ahah

References

  1. Anderson J. L., Campbell E. M., Wu X., Vandegraaff N., Engelman A., Hope T. J.. ( 2006;). Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. . J Virol 80:, 9754–9760. [CrossRef][PubMed]
    [Google Scholar]
  2. Berthoux L., Towers G. J., Gurer C., Salomoni P., Pandolfi P. P., Luban J.. ( 2003;). As2O3 enhances retroviral reverse transcription and counteracts Ref1 antiviral activity. . J Virol 77:, 3167–3180. [CrossRef][PubMed]
    [Google Scholar]
  3. Berthoux L., Sebastian S., Sayah D. M., Luban J.. ( 2005a;). Disruption of human TRIM5α antiviral activity by nonhuman primate orthologues. . J Virol 79:, 7883–7888. [CrossRef][PubMed]
    [Google Scholar]
  4. Berthoux L., Sebastian S., Sokolskaja E., Luban J.. ( 2005b;). Cyclophilin A is required for TRIM5α-mediated resistance to HIV-1 in Old World monkey cells. . Proc Natl Acad Sci U S A 102:, 14849–14853. [CrossRef][PubMed]
    [Google Scholar]
  5. Bérubé J., Bouchard A., Berthoux L.. ( 2007;). Both TRIM5α and TRIMCyp have only weak antiviral activity in canine D17 cells. . Retrovirology 4:, 68. [CrossRef][PubMed]
    [Google Scholar]
  6. Biris N., Tomashevski A., Bhattacharya A., Diaz-Griffero F., Ivanov D. N.. ( 2013;). Rhesus monkey TRIM5α SPRY domain recognizes multiple epitopes that span several capsid monomers on the surface of the HIV-1 mature viral core. . J Mol Biol 425:, 5032–5044. [CrossRef][PubMed]
    [Google Scholar]
  7. Black L. R., Aiken C.. ( 2010;). TRIM5α disrupts the structure of assembled HIV-1 capsid complexes in vitro. . J Virol 84:, 6564–6569. [CrossRef][PubMed]
    [Google Scholar]
  8. Brennan G., Kozyrev Y., Hu S. L.. ( 2008;). TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. . Proc Natl Acad Sci U S A 105:, 3569–3574. [CrossRef][PubMed]
    [Google Scholar]
  9. Burkhardt J. K., Echeverri C. J., Nilsson T., Vallee R. B.. ( 1997;). Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. . J Cell Biol 139:, 469–484. [CrossRef][PubMed]
    [Google Scholar]
  10. Campbell E. M., Dodding M. P., Yap M. W., Wu X., Gallois-Montbrun S., Malim M. H., Stoye J. P., Hope T. J.. ( 2007;). TRIM5 α cytoplasmic bodies are highly dynamic structures. . Mol Biol Cell 18:, 2102–2111. [CrossRef][PubMed]
    [Google Scholar]
  11. Campbell E. M., Perez O., Anderson J. L., Hope T. J.. ( 2008;). Visualization of a proteasome-independent intermediate during restriction of HIV-1 by rhesus TRIM5α. . J Cell Biol 180:, 549–561. [CrossRef][PubMed]
    [Google Scholar]
  12. Carson S. D., Pirruccello S. J.. ( 2013;). HeLa cell heterogeneity and coxsackievirus B3 cytopathic effect: implications for inter-laboratory reproducibility of results. . J Med Virol 85:, 677–683. [CrossRef][PubMed]
    [Google Scholar]
  13. Carthagena L., Parise M. C., Ringeard M., Chelbi-Alix M. K., Hazan U., Nisole S.. ( 2008;). Implication of TRIM α and TRIMCyp in interferon-induced anti-retroviral restriction activities. . Retrovirology 5:, 59. [CrossRef][PubMed]
    [Google Scholar]
  14. Danielson C. M., Cianci G. C., Hope T. J.. ( 2012;). Recruitment and dynamics of proteasome association with rhTRIM5α cytoplasmic complexes during HIV-1 infection. . Traffic 13:, 1206–1217. [CrossRef][PubMed]
    [Google Scholar]
  15. De Iaco A., Luban J.. ( 2014;). Cyclophilin A promotes HIV-1 reverse transcription but its effect on transduction correlates best with its effect on nuclear entry of viral cDNA. . Retrovirology 11:, 11. [CrossRef][PubMed]
    [Google Scholar]
  16. Diaz-Griffero F., Li X., Javanbakht H., Song B., Welikala S., Stremlau M., Sodroski J.. ( 2006a;). Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. . Virology 349:, 300–315. [CrossRef][PubMed]
    [Google Scholar]
  17. Diaz-Griffero F., Vandegraaff N., Li Y., McGee-Estrada K., Stremlau M., Welikala S., Si Z., Engelman A., Sodroski J.. ( 2006b;). Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. . Virology 351:, 404–419. [CrossRef][PubMed]
    [Google Scholar]
  18. Diaz-Griffero F., Kar A., Lee M., Stremlau M., Poeschla E., Sodroski J.. ( 2007;). Comparative requirements for the restriction of retrovirus infection by TRIM5α and TRIMCyp. . Virology 369:, 400–410. [CrossRef][PubMed]
    [Google Scholar]
  19. Dodding M. P., Way M.. ( 2011;). Coupling viruses to dynein and kinesin-1. . EMBO J 30:, 3527–3539. [CrossRef][PubMed]
    [Google Scholar]
  20. Fricke T., White T. E., Schulte B., de Souza Aranha Vieira D. A., Dharan A., Campbell E. M., Brandariz-Nuñez A., Diaz-Griffero F.. ( 2014;). MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1. . Retrovirology 11:, 68. [CrossRef][PubMed]
    [Google Scholar]
  21. Ganser-Pornillos B. K., Chandrasekaran V., Pornillos O., Sodroski J. G., Sundquist W. I., Yeager M.. ( 2011;). Hexagonal assembly of a restricting TRIM5α protein. . Proc Natl Acad Sci U S A 108:, 534–539. [CrossRef][PubMed]
    [Google Scholar]
  22. Gong J., Shen X. H., Qiu H., Chen C., Yang R. G.. ( 2011;). Rhesus monkey TRIM5α has distinct HIV-1 restriction activity among different mammalian cell lines. . Curr Microbiol 63:, 531–537. [CrossRef][PubMed]
    [Google Scholar]
  23. Goujon C., Moncorgé O., Bauby H., Doyle T., Ward C. C., Schaller T., Hué S., Barclay W. S., Schulz R., Malim M. H.. ( 2013;). Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. . Nature 502:, 559–562. [CrossRef][PubMed]
    [Google Scholar]
  24. Han K., Lou D. I., Sawyer S. L.. ( 2011;). Identification of a genomic reservoir for new TRIM genes in primate genomes. . PLoS Genet 7:, e1002388. [CrossRef][PubMed]
    [Google Scholar]
  25. Harris R. S., Hultquist J. F., Evans D. T.. ( 2012;). The restriction factors of human immunodeficiency virus. . J Biol Chem 287:, 40875–40883. [CrossRef][PubMed]
    [Google Scholar]
  26. Hatziioannou T., Cowan S., Goff S. P., Bieniasz P. D., Towers G. J.. ( 2003;). Restriction of multiple divergent retroviruses by Lv1 and Ref1. . EMBO J 22:, 385–394. [CrossRef][PubMed]
    [Google Scholar]
  27. Hatziioannou T., Perez-Caballero D., Yang A., Cowan S., Bieniasz P. D.. ( 2004;). Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5α. . Proc Natl Acad Sci U S A 101:, 10774–10779. [CrossRef][PubMed]
    [Google Scholar]
  28. He J., Chen Y., Farzan M., Choe H., Ohagen A., Gartner S., Busciglio J., Yang X., Hofmann W.. & other authors ( 1997;). CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. . Nature 385:, 645–649. [CrossRef][PubMed]
    [Google Scholar]
  29. Ho D. D., Rota T. R., Kaplan J. C., Hartshorn K. L., Andrews C. A., Schooley R. T., Hirsch M. S.. ( 1985;). Recombinant human interferon alfa-A suppresses HTLV-III replication in vitro. . Lancet 325:, 602–604. [CrossRef][PubMed]
    [Google Scholar]
  30. Höök P., Vallee R. B.. ( 2006;). The dynein family at a glance. . J Cell Sci 119:, 4369–4371. [CrossRef][PubMed]
    [Google Scholar]
  31. Hornick J. E., Bader J. R., Tribble E. K., Trimble K., Breunig J. S., Halpin E. S., Vaughan K. T., Hinchcliffe E. H.. ( 2008;). Live-cell analysis of mitotic spindle formation in taxol-treated cells. . Cell Motil Cytoskeleton 65:, 595–613. [CrossRef][PubMed]
    [Google Scholar]
  32. Hsieh M. J., White P. J., Pouton C. W.. ( 2010;). Interaction of viruses with host cell molecular motors. . Curr Opin Biotechnol 21:, 633–639. [CrossRef][PubMed]
    [Google Scholar]
  33. Hulme A. E., Perez O., Hope T. J.. ( 2011;). Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription. . Proc Natl Acad Sci U S A 108:, 9975–9980. [CrossRef][PubMed]
    [Google Scholar]
  34. Jordan M. A., Wilson L.. ( 2004;). Microtubules as a target for anticancer drugs. . Nat Rev Cancer 4:, 253–265. [CrossRef][PubMed]
    [Google Scholar]
  35. Jordan M. A., Thrower D., Wilson L.. ( 1992;). Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. . J Cell Sci 102:, 401–416.[PubMed]
    [Google Scholar]
  36. Kane M., Yadav S. S., Bitzegeio J., Kutluay S. B., Zang T., Wilson S. J., Schoggins J. W., Rice C. M., Yamashita M.. & other authors ( 2013;). MX2 is an interferon-induced inhibitor of HIV-1 infection. . Nature 502:, 563–566. [CrossRef][PubMed]
    [Google Scholar]
  37. Keckesova Z., Ylinen L. M., Towers G. J.. ( 2004;). The human and African green monkey TRIM5α genes encode Ref1 and Lv1 retroviral restriction factor activities. . Proc Natl Acad Sci U S A 101:, 10780–10785. [CrossRef][PubMed]
    [Google Scholar]
  38. Lehmann M., Milev M. P., Abrahamyan L., Yao X. J., Pante N., Mouland A. J.. ( 2009;). Intracellular transport of human immunodeficiency virus type 1 genomic RNA and viral production are dependent on dynein motor function and late endosome positioning. . J Biol Chem 284:, 14572–14585. [CrossRef][PubMed]
    [Google Scholar]
  39. Liu Z., Pan Q., Ding S., Qian J., Xu F., Zhou J., Cen S., Guo F., Liang C.. ( 2013;). The interferon-inducible MxB protein inhibits HIV-1 infection. . Cell Host Microbe 14:, 398–410. [CrossRef][PubMed]
    [Google Scholar]
  40. Lu J., Pan Q., Rong L., He W., Liu S. L., Liang C.. ( 2011;). The IFITM proteins inhibit HIV-1 infection. . J Virol 85:, 2126–2137. [CrossRef][PubMed]
    [Google Scholar]
  41. Luduena R. F., Roach M. C.. ( 1991;). Tubulin sulfhydryl groups as probes and targets for antimitotic and antimicrotubule agents. . Pharmacol Ther 49:, 133–152. [CrossRef][PubMed]
    [Google Scholar]
  42. Lukic Z., Hausmann S., Sebastian S., Rucci J., Sastri J., Robia S. L., Luban J., Campbell E. M.. ( 2011;). TRIM5α associates with proteasomal subunits in cells while in complex with HIV-1 virions. . Retrovirology 8:, 93. [CrossRef][PubMed]
    [Google Scholar]
  43. Lukic Z., Dharan A., Fricke T., Diaz-Griffero F., Campbell E. M.. ( 2014;). HIV-1 uncoating is facilitated by dynein and kinesin 1. . J Virol 88:, 13613–13625. [CrossRef][PubMed]
    [Google Scholar]
  44. Malim M. H., Bieniasz P. D.. ( 2012;). HIV restriction factors and mechanisms of evasion. . Cold Spring Harb Perspect Med 2:, a006940. [CrossRef][PubMed]
    [Google Scholar]
  45. McEwan W. A., Schaller T., Ylinen L. M., Hosie M. J., Towers G. J., Willett B. J.. ( 2009;). Truncation of TRIM5 in the Feliformia explains the absence of retroviral restriction in cells of the domestic cat. . J Virol 83:, 8270–8275. [CrossRef][PubMed]
    [Google Scholar]
  46. Melkonian K. A., Maier K. C., Godfrey J. E., Rodgers M., Schroer T. A.. ( 2007;). Mechanism of dynamitin-mediated disruption of dynactin. . J Biol Chem 282:, 19355–19364. [CrossRef][PubMed]
    [Google Scholar]
  47. Mouland A. J., Milev M. P.. ( 2012;). Role of dynein in viral pathogenesis. . In Dyneins: Structure, Biology and Disease, pp. 561–583. Edited by King S. M... Oxford:: Elsevier;. [CrossRef]
    [Google Scholar]
  48. Nepveu-Traversy M. E., Bérubé J., Berthoux L.. ( 2009;). TRIM5α and TRIMCyp form apparent hexamers and their multimeric state is not affected by exposure to restriction-sensitive viruses or by treatment with pharmacological inhibitors. . Retrovirology 6:, 100. [CrossRef][PubMed]
    [Google Scholar]
  49. Newman R. M., Hall L., Kirmaier A., Pozzi L. A., Pery E., Farzan M., O’Neil S. P., Johnson W.. ( 2008;). Evolution of a TRIM5-CypA splice isoform in old world monkeys. . PLoS Pathog 4:, e1000003. [CrossRef][PubMed]
    [Google Scholar]
  50. Nisole S., Lynch C., Stoye J. P., Yap M. W.. ( 2004;). A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. . Proc Natl Acad Sci U S A 101:, 13324–13328. [CrossRef][PubMed]
    [Google Scholar]
  51. Pawlica P., Berthoux L.. ( 2014;). Cytoplasmic dynein promotes HIV-1 uncoating. . Viruses 6:, 4195–4211. [CrossRef][PubMed]
    [Google Scholar]
  52. Pawlica P., Le Sage V., Poccardi N., Tremblay M. J., Mouland A. J., Berthoux L.. ( 2014;). Functional evidence for the involvement of microtubules and dynein motor complexes in TRIM5α-mediated restriction of retroviruses. . J Virol 88:, 5661–5676. [CrossRef][PubMed]
    [Google Scholar]
  53. Perez-Caballero D., Hatziioannou T., Zhang F., Cowan S., Bieniasz P. D.. ( 2005;). Restriction of human immunodeficiency virus type 1 by TRIM-CypA occurs with rapid kinetics and independently of cytoplasmic bodies, ubiquitin, and proteasome activity. . J Virol 79:, 15567–15572. [CrossRef][PubMed]
    [Google Scholar]
  54. Price A. J., Marzetta F., Lammers M., Ylinen L. M., Schaller T., Wilson S. J., Towers G. J., James L. C.. ( 2009;). Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. . Nat Struct Mol Biol 16:, 1036–1042. [CrossRef][PubMed]
    [Google Scholar]
  55. Reymond A., Meroni G., Fantozzi A., Merla G., Cairo S., Luzi L., Riganelli D., Zanaria E., Messali S.. & other authors ( 2001;). The tripartite motif family identifies cell compartments. . EMBO J 20:, 2140–2151. [CrossRef][PubMed]
    [Google Scholar]
  56. Sardiello M., Cairo S., Fontanella B., Ballabio A., Meroni G.. ( 2008;). Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. . BMC Evol Biol 8:, 225. [CrossRef][PubMed]
    [Google Scholar]
  57. Sayah D. M., Sokolskaja E., Berthoux L., Luban J.. ( 2004;). Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. . Nature 430:, 569–573. [CrossRef][PubMed]
    [Google Scholar]
  58. Schiff P. B., Fant J., Horwitz S. B.. ( 1979;). Promotion of microtubule assembly in vitro by taxol. . Nature 277:, 665–667. [CrossRef][PubMed]
    [Google Scholar]
  59. Schrader M., King S. J., Stroh T. A., Schroer T. A.. ( 2000;). Real time imaging reveals a peroxisomal reticulum in living cells. . J Cell Sci 113:, 3663–3671.[PubMed]
    [Google Scholar]
  60. Sebastian S., Luban J.. ( 2005;). TRIM5α selectively binds a restriction-sensitive retroviral capsid. . Retrovirology 2:, 40. [CrossRef][PubMed]
    [Google Scholar]
  61. Shi J., Friedman D. B., Aiken C.. ( 2013;). Retrovirus restriction by TRIM5 proteins requires recognition of only a small fraction of viral capsid subunits. . J Virol 87:, 9271–9278. [CrossRef][PubMed]
    [Google Scholar]
  62. Skillman D. R., Malone J. L., Decker C. F., Wagner K. F., Mapou R. L., Liao M. J., Testa D., Meltzer M. S.. ( 1996;). Phase I trial of interferon alfa-n3 in early-stage human immunodeficiency virus type 1 disease: evidence for drug safety, tolerance, and antiviral activity. . J Infect Dis 173:, 1107–1114. [CrossRef][PubMed]
    [Google Scholar]
  63. Song B., Gold B., O’Huigin C., Javanbakht H., Li X., Stremlau M., Winkler C., Dean M., Sodroski J.. ( 2005;). The B30.2(SPRY) domain of the retroviral restriction factor TRIM5α exhibits lineage-specific length and sequence variation in primates. . J Virol 79:, 6111–6121. [CrossRef][PubMed]
    [Google Scholar]
  64. Stremlau M., Owens C. M., Perron M. J., Kiessling M., Autissier P., Sodroski J.. ( 2004;). The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys. . Nature 427:, 848–853. [CrossRef][PubMed]
    [Google Scholar]
  65. Stremlau M., Perron M., Lee M., Li Y., Song B., Javanbakht H., Diaz-Griffero F., Anderson D. J., Sundquist W. I., Sodroski J.. ( 2006;). Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5α restriction factor. . Proc Natl Acad Sci U S A 103:, 5514–5519. [CrossRef][PubMed]
    [Google Scholar]
  66. Towers G. J., Hatziioannou T., Cowan S., Goff S. P., Luban J., Bieniasz P. D.. ( 2003;). Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. . Nat Med 9:, 1138–1143. [CrossRef][PubMed]
    [Google Scholar]
  67. Virgen C. A., Kratovac Z., Bieniasz P. D., Hatziioannou T.. ( 2008;). Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. . Proc Natl Acad Sci U S A 105:, 3563–3568. [CrossRef][PubMed]
    [Google Scholar]
  68. Wilson S. J., Webb B. L., Ylinen L. M., Verschoor E., Heeney J. L., Towers G. J.. ( 2008;). Independent evolution of an antiviral TRIMCyp in rhesus macaques. . Proc Natl Acad Sci U S A 105:, 3557–3562. [CrossRef][PubMed]
    [Google Scholar]
  69. Yamamoto J. K., Barré-Sinoussi F., Bolton V., Pedersen N. C., Gardner M. B.. ( 1986;). Human alpha- and beta-interferon but not gamma- suppress the in vitro replication of LAV, HTLV-III, and ARV-2. . J Interferon Res 6:, 143–152. [CrossRef][PubMed]
    [Google Scholar]
  70. Yang Y., Brandariz-Nuñez A., Fricke T., Ivanov D. N., Sarnak Z., Diaz-Griffero F.. ( 2014;). Binding of the rhesus TRIM5α PRYSPRY domain to capsid is necessary but not sufficient for HIV-1 restriction. . Virology 448:, 217–228. [CrossRef][PubMed]
    [Google Scholar]
  71. Yap M. W., Nisole S., Lynch C., Stoye J. P.. ( 2004;). TRIM5α protein restricts both HIV-1 and murine leukemia virus. . Proc Natl Acad Sci U S A 101:, 10786–10791. [CrossRef][PubMed]
    [Google Scholar]
  72. Zhao G., Ke D., Vu T., Ahn J., Shah V. B., Yang R., Aiken C., Charlton L. M., Gronenborn A. M., Zhang P.. ( 2011;). Rhesus TRIM5α disrupts the HIV-1 capsid at the inter-hexamer interfaces. . PLoS Pathog 7:, e1002009. [CrossRef][PubMed]
    [Google Scholar]
  73. Zheng Y. H., Jeang K. T., Tokunaga K.. ( 2012;). Host restriction factors in retroviral infection: promises in virus-host interaction. . Retrovirology 9:, 112. [CrossRef][PubMed]
    [Google Scholar]
  74. Zufferey R., Nagy D., Mandel R. J., Naldini L., Trono D.. ( 1997;). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. . Nat Biotechnol 15:, 871–875. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000018
Loading
/content/journal/jgv/10.1099/jgv.0.000018
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error